Search results for: Recognition of driving scene.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1188

Search results for: Recognition of driving scene.

798 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform

Authors: Xie Kefeng, Zhang He

Abstract:

For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.

Keywords: 2-HUS/U platform, Dynamics, Lagrange, Parallel platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
797 Pattern Recognition of Biological Signals

Authors: Paulo S. Caparelli, Eduardo Costa, Alexsandro S. Soares, Hipolito Barbosa

Abstract:

This paper presents an evolutionary method for designing electronic circuits and numerical methods associated with monitoring systems. The instruments described here have been used in studies of weather and climate changes due to global warming, and also in medical patient supervision. Genetic Programming systems have been used both for designing circuits and sensors, and also for determining sensor parameters. The authors advance the thesis that the software side of such a system should be written in computer languages with a strong mathematical and logic background in order to prevent software obsolescence, and achieve program correctness.

Keywords: Pattern recognition, evolutionary computation, biological signal, functional programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
796 Well-Being of Lagos Urban Mini-Bus Drivers: The Influence of Age and Marital Status

Authors: Bolajoko I. Malomo, Maryam O. Yusuf

Abstract:

Lagos urban mini bus drivers play a critical role in the transportation sector. The current major mode of transportation within Lagos metropolis remains road transportation and this confirms the relevance of urban mini-bus drivers in transporting the populace to their various destinations. Other modes of transportation such as the train and waterways are currently inadequate. Various threats to the well-being of urban bus drivers include congested traffic typical of modern day lifestyles, dwindling financial returns due to long hours in traffic, fewer hours of sleep, inadequate diet, time pressure, and assaults related to fare disputes. Several healthrelated problems have been documented to be associated with urban bus driving. For instance, greater rates of hypertension, obesity and cholesterol level have been reported. Research studies are yet to identify the influence of age and marital status on the well-being of urban mini-bus drivers in Lagos metropolis. A study of this nature is necessary as it is culturally perceived in Nigeria that older and married people are especially influenced by family affiliation and would behave in ways that would project positive outcomes. The study sample consisted of 150 urban mini-bus drivers who were conveniently sampled from six (6) different terminuses where their journey begins and terminates. The well-being questionnaire was administered to participants. The criteria for inclusion in the study included the ability to read in English language and the confirmation that interested participants were on duty and suited to be driving mini-buses. Due to the nature of the job of bus driving, the researcher administered the questionnaires on participants who were free and willing to respond to the survey. All participants were males of various age groups and of different marital statuses. Results of analyses conducted revealed no significant influence of age and marital status on the well-being of urban mini-bus drivers. This indicates that the well-being of urban mini bus drivers is not influenced by age or marital status. The findings of this study have cultural implications. It negates the popularly held belief that older and married people care more about their well-being than younger and single people. It brings to fore the need to also identify and consider other factors when certifying people for the job of urban bus driving.

Keywords: Age, Lagos metropolis, marital status, well-being of urban mini bus drivers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
795 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: Brain-computer interface, speech recognition, electroencephalography EEG, Wernicke area, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
794 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: Automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
793 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
792 Structure of Linkages and Cam Gear for Integral Steering of Vehicles

Authors: Petre Alexandru, Dragos Macaveiu, Catalin Alexandru

Abstract:

This paper addresses issues of integral steering of vehicles with two steering axles, where the rear wheels are pivoted in the direction of the front wheels, but also in the opposite direction. The steering box of the rear axle is presented with simple linkages (single contour) that correlate the pivoting of the rear wheels according to the direction of the front wheels, respectively to the rotation angle of the steering wheel. The functionality of the system is analyzed – the extent to which the requirements of the integral steering are met by the considered/proposed mechanisms. The paper highlights the quality of the single contour linkages, with two driving elements for meeting these requirements, emphasizing diagrams of mechanisms with 2 driving elements. Cam variants are analyzed and proposed for the rear axle steering box. Cam profiles are determined by various factors.

Keywords: Cam gear, four wheel drive, integral steering, linkage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
791 2D Spherical Spaces for Face Relighting under Harsh Illumination

Authors: Amr Almaddah, Sadi Vural, Yasushi Mae, Kenichi Ohara, Tatsuo Arai

Abstract:

In this paper, we propose a robust face relighting technique by using spherical space properties. The proposed method is done for reducing the illumination effects on face recognition. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients. First, an internal training illumination database is generated by computing face albedo and face normal from 2D images under different lighting conditions. Based on the generated database, we analyze the target face pixels and compare them with the training bootstrap by using pre-generated tiles. In this work, practical real time processing speed and small image size were considered when designing the framework. In contrast to other works, our technique requires no 3D face models for the training process and takes a single 2D image as an input. Experimental results on publicly available databases show that the proposed technique works well under severe lighting conditions with significant improvements on the face recognition rates.

Keywords: Face synthesis and recognition, Face illumination recovery, 2D spherical spaces, Vision for graphics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
790 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) of English and machine translation (MT) for English and Croatian and Croatian-English language pairs in the domain of business correspondence. The first part presents results of training the ASR commercial system on English data sets, enriched by error analysis. The second part presents results of machine translation performed by free online tool for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: Automatic machine translation, integrated language technologies, quality evaluation, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
789 Segmentation Problems and Solutions in Printed Degraded Gurmukhi Script

Authors: M. K. Jindal, G. S. Lehal, R. K. Sharma

Abstract:

Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper we have proposed a complete solution for segmenting touching characters in all the three zones of printed Gurmukhi script. A study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis. Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone, upper zone and lower zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded printed Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text. We have also discussed a new and useful technique to segment the horizontally overlapping lines.

Keywords: Character Segmentation, Middle Zone, Upper Zone, Lower Zone, Touching Characters, Horizontally Overlapping Lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
788 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Disease

Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.

Keywords: Alzheimer’s disease, Speech Emotion Recognition, longitudinal biomarker, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274
787 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition

Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen

Abstract:

An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.

Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
786 Pareidolia and Perception of Anger in Vehicle Styles: Survey Results

Authors: Alan S. Hoback

Abstract:

Most people see human faces in car front and back ends because of the process of pareidolia. 96 people were surveyed to see how many of them saw a face in the vehicle styling. Participants were aged 18 to 72 years. 94% of the participants saw faces in the front-end design of production models. All participants that recognized faces indicated that most styles showed some degree of an angry expression. It was found that women were more likely to see faces in inanimate objects. However, with respect to whether women were more likely to perceive anger in the vehicle design, the results need further clarification. Survey responses were correlated to the design features of vehicles to determine what cues the respondents were likely looking at when responding. Whether the features looked anthropomorphic was key to anger perception. Features such as the headlights which could represent eyes and the air intake that could represent a mouth had high correlations to trends in scores. Results are compared among models, makers, by groupings of body styles classifications for the top 12 brands sold in the US, and by year for the top 20 models sold in the US in 2016. All of the top models sold increased in perception of an angry expression over the last 20 years or since the model was introduced, but the relative change varied by body style grouping.

Keywords: Aggressive driving, face recognition, road rage, vehicle styling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
785 Decomposition Method for Neural Multiclass Classification Problem

Authors: H. El Ayech, A. Trabelsi

Abstract:

In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.

Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
784 Spectral Analysis of Speech: A New Technique

Authors: Neeta Awasthy, J.P.Saini, D.S.Chauhan

Abstract:

ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET.

Keywords: Cepstral Coefficient, Distance measures, Independent Component Analysis, Linear Predictive Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
783 Object Localization in Medical Images Using Genetic Algorithms

Authors: George Karkavitsas, Maria Rangoussi

Abstract:

We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.

Keywords: Genetic algorithms, object registration, pattern recognition, blood cell microscope images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
782 Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA

Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Ashraful Alam, Nam Kim, Jae-Hyeung Park

Abstract:

A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.

Keywords: Aw-SpPC, Expressoin Recognition, Face context, Face Detection, PCA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
781 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
780 Speech Recognition Using Scaly Neural Networks

Authors: Akram M. Othman, May H. Riadh

Abstract:

This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.

Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
779 Combining Skin Color and Optical Flow for Computer Vision Systems

Authors: Muhammad Raza Ali, Tim Morris

Abstract:

Skin color is an important visual cue for computer vision systems involving human users. In this paper we combine skin color and optical flow for detection and tracking of skin regions. We apply these techniques to gesture recognition with encouraging results. We propose a novel skin similarity measure. For grouping detected skin regions we propose a novel skin region grouping mechanism. The proposed techniques work with any number of skin regions making them suitable for a multiuser scenario.

Keywords: Bayesian tracking, chromaticity space, optical flowgesture recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
778 OCR for Script Identification of Hindi (Devnagari) Numerals using Error Diffusion Halftoning Algorithm with Neural Classifier

Authors: Banashree N. P., Andhe Dharani, R. Vasanta, P. S. Satyanarayana

Abstract:

The applications on numbers are across-the-board that there is much scope for study. The chic of writing numbers is diverse and comes in a variety of form, size and fonts. Identification of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], machine printed or handwritten characters/numerals are recognized. There are plentiful approaches that deal with problem of detection of numerals/character depending on the sort of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent our work focused on a technique in feature extraction i.e. Local-based approach, a method using 16-segment display concept, which is extracted from halftoned images & Binary images of isolated numerals. These feature vectors are fed to neural classifier model that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. Experimentation result shows that recognition rate of halftoned images is 98 % compared to binary images (95%).

Keywords: OCR, Halftoning, Neural classifier, 16-segmentdisplay concept.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
777 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model

Authors: Wei Lu

Abstract:

With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.

Keywords: College students, online consumption, stimulus-organism-response driving model, structural equation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
776 Automated Driving Deep Neural Network Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling the human behaviour. However, the exclusive use of this technology still seems insufficient to control the vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: Accuracy assessment, AI-Driven Mobility, Artificial Intelligence, automated vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 437
775 Recognition of Isolated Speech Signals using Simplified Statistical Parameters

Authors: Abhijit Mitra, Bhargav Kumar Mitra, Biswajoy Chatterjee

Abstract:

We present a novel scheme to recognize isolated speech signals using certain statistical parameters derived from those signals. The determination of the statistical estimates is based on extracted signal information rather than the original signal information in order to reduce the computational complexity. Subtle details of these estimates, after extracting the speech signal from ambience noise, are first exploited to segregate the polysyllabic words from the monosyllabic ones. Precise recognition of each distinct word is then carried out by analyzing the histogram, obtained from these information.

Keywords: Isolated speech signals, Block overlapping technique, Positive peaks, Histogram analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
774 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: Elliptical trajectory, linear motor, piezoelectric stack, rigid clamping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
773 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis

Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi

Abstract:

We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.

Keywords: Dimensional Analysis, Elmore model, RC network, Signal Attenuation, Ultra-High-Speed Image Sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
772 Rock Textures Classification Based on Textural and Spectral Features

Authors: Tossaporn Kachanubal, Somkait Udomhunsakul

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Texture classification, SFM, neural network, rock texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
771 Moment Invariants in Image Analysis

Authors: Jan Flusser

Abstract:

This paper aims to present a survey of object recognition/classification methods based on image moments. We review various types of moments (geometric moments, complex moments) and moment-based invariants with respect to various image degradations and distortions (rotation, scaling, affine transform, image blurring, etc.) which can be used as shape descriptors for classification. We explain a general theory how to construct these invariants and show also a few of them in explicit forms. We review efficient numerical algorithms that can be used for moment computation and demonstrate practical examples of using moment invariants in real applications.

Keywords: Object recognition, degraded images, moments, moment invariants, geometric invariants, invariants to convolution, moment computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3923
770 A Real-time Computer Vision System for VehicleTracking and Collision Detection

Authors: Mustafa Kisa, Fatih Mehmet Botsali

Abstract:

Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.

Keywords: Image possessing, vehicle tracking, license plate detection, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
769 Information Fusion for Identity Verification

Authors: Girija Chetty, Monica Singh

Abstract:

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..

Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779