Search results for: Control chart pattern recognition
4785 Effectiveness and Equity: New Challenges for Social Recognition in Higher Education
Authors: Correa Arias, César
Abstract:
Today, Higher Education in a global scope is subordinated to the greater institutional controls through the policies of the Quality of Education. These include processes of over evaluation of all the academic activities: students- and professors- performance, educational logistics, managerial standards for the administration of institutions of higher education, as well as the establishment of the imaginaries of excellence and prestige as the foundations on which universities of the XXI century will focus their present and future goals and interests. But at the same time higher education systems worldwide are facing the most profound crisis of sense and meaning and attending enormous mutations in their identity. Based in a qualitative research approach, this paper shows the social configurations that the scholars at the Universities in Mexico build around the discourse of the Quality of Education, and how these policies put in risk the social recognition of these individuals.
Keywords: Higher education, quality of education, social recognition, social configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13634784 Some Separations in Covering Approximation Spaces
Authors: Xun Ge, Jinjin Li, Ying Ge
Abstract:
Adopting Zakowski-s upper approximation operator C and lower approximation operator C, this paper investigates granularity-wise separations in covering approximation spaces. Some characterizations of granularity-wise separations are obtained by means of Pawlak rough sets and some relations among granularitywise separations are established, which makes it possible to research covering approximation spaces by logical methods and mathematical methods in computer science. Results of this paper give further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.Keywords: Rough set, covering approximation space, granularitywise separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16834783 Size-Reduction Strategies for Iris Codes
Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl
Abstract:
Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple subsampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two-stage identification approach, using small-sized iris code templates in a pre-selection stage, and full resolution templates for final identification, which shows promising recognition behaviour.
Keywords: Iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17864782 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification
Authors: Abdelhadi Lotfi, Abdelkader Benyettou
Abstract:
In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.
Keywords: Classification, probabilistic neural networks, network optimization, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12224781 Study on Landscape Pattern Evolution of Ecological-Living-Industrial Land in Plateau Mountainous Area: A Case Study of Yuxi City, Yunnan Province
Authors: Ying Pan, Li Wu, Jing Zhou, Lan Li
Abstract:
The coordination and development of ecological-living-industrial land uses are the premise foundations for the formulation and implementation of the current land space planning, and more attention should be paid to plateau mountainous areas. This research is based on spatial analysis technology and landscape pattern index method taking Yuxi city, a typical mountainous plateau as the research area. By using relevant software such as ArcGIS10.5, Fragstats 4.2 and the four remote sensing images of Yuxi city in 1980, 1995, 2005 and 2015, the temporal-spatial evolution and differentiation pattern of ecological-living-industrial land applications have been discussed. The research results show that: (1) From the perspective of land use type change, ecological land of Yuxi city has been the main source of land from 1980 to 2015, which totally occupies more than 78%. During this period, the spatial structure of the ecological-living-industrial land changed significantly, namely, the living land. Its land area increased significantly from 0.83% of the total area in 1980 to 1.25% in 2015, the change range of ecological land and industrial land is relatively small. (2) In terms of land use landscape pattern transfer matrix, from 1980 to 2015, the industrial land and ecological land in Yuxi city have been gradually transferred to living land. (3) In the aspect of landscape pattern changes, various landscape pattern indexes of Yuxi city indicate that the fragmentation degree of landscape pattern of the ecological-living-industrial land in this region is increasing. The degree of agglomeration goes down, and the landscape types have changed from being relatively simple to relatively rich. The landscape is more diverse, but the patch size is uneven, meanwhile, the integrity of the ecological space is destroyed.
Keywords: Ecological-living-industrial land, spatio-temporal evolution, landscape pattern, plateau mountainous area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6814780 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal
Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden
Abstract:
Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24714779 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.
Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4474778 Recognition of Isolated Handwritten Latin Characters using One Continuous Route of Freeman Chain Code Representation and Feedforward Neural Network Classifier
Authors: Dewi Nasien, Siti S. Yuhaniz, Habibollah Haron
Abstract:
In a handwriting recognition problem, characters can be represented using chain codes. The main problem in representing characters using chain code is optimizing the length of the chain code. This paper proposes to use randomized algorithm to minimize the length of Freeman Chain Codes (FCC) generated from isolated handwritten characters. Feedforward neural network is used in the classification stage to recognize the image characters. Our test results show that by applying the proposed model, we reached a relatively high accuracy for the problem of isolated handwritten when tested on NIST database.Keywords: Handwriting Recognition, Freeman Chain Code andFeedforward Backpropagation Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18204777 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network
Authors: Zukisa Nante, Wang Zenghui
Abstract:
Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.
Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5044776 Object Identification with Color, Texture, and Object-Correlation in CBIR System
Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali
Abstract:
Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20274775 A Case Study on Appearance Based Feature Extraction Techniques and Their Susceptibility to Image Degradations for the Task of Face Recognition
Authors: Vitomir Struc, Nikola Pavesic
Abstract:
Over the past decades, automatic face recognition has become a highly active research area, mainly due to the countless application possibilities in both the private as well as the public sector. Numerous algorithms have been proposed in the literature to cope with the problem of face recognition, nevertheless, a group of methods commonly referred to as appearance based have emerged as the dominant solution to the face recognition problem. Many comparative studies concerned with the performance of appearance based methods have already been presented in the literature, not rarely with inconclusive and often with contradictory results. No consent has been reached within the scientific community regarding the relative ranking of the efficiency of appearance based methods for the face recognition task, let alone regarding their susceptibility to appearance changes induced by various environmental factors. To tackle these open issues, this paper assess the performance of the three dominant appearance based methods: principal component analysis, linear discriminant analysis and independent component analysis, and compares them on equal footing (i.e., with the same preprocessing procedure, with optimized parameters for the best possible performance, etc.) in face verification experiments on the publicly available XM2VTS database. In addition to the comparative analysis on the XM2VTS database, ten degraded versions of the database are also employed in the experiments to evaluate the susceptibility of the appearance based methods on various image degradations which can occur in "real-life" operating conditions. Our experimental results suggest that linear discriminant analysis ensures the most consistent verification rates across the tested databases.
Keywords: Biometrics, face recognition, appearance based methods, image degradations, the XM2VTS database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22834774 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.
Keywords: Canny pruning, hand recognition, machine learning, skin tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13064773 Research on Landscape Pattern Revolution of Land Use in Fuxian Lake Basin Based on RS and GIS
Abstract:
Based on the remote image data of land use in the four periods of 1980, 1995, 2005 and 2015, this study quantitatively analyzed the dynamic variation of landscape transfer and landscape pattern in the Fuxian Lake basin by constructing a land use dynamic variation model and using ArcGIS 10.5 and Fragstats 4.2. The results indicate that: (1) From the perspective of land use landscape transfer, the intensity of land use is slowly rising from 1980 to 2015, and the main reduction landscape type is farmland and its net amount of transfer-out is the most among all transfer-outs, which is to 788.85 hm2, the main added landscape type is construction land and its net amount of transfer-in is the most, which is to 475.23 hm2. Meanwhile, the land use landscape variation in the stage of 2005-2015 showed the most severe among three periods when compared with other two stages. (2) From the perspective of land use landscape variation, significant spatial differences are shown, the changes in the north of the basin are significantly higher than that in the south, the west coast are apparently higher than the east. (3) From the perspective of landscape pattern index, the number of plaques is on the increase in the periods of 35 years in the basin, and there is little mutual interference between landscape patterns because the plaques are relatively discrete. Cultivated land showed a trend of fragmentation but constructive land showed trend of relative concentration. The sustainable development and biodiversity in this basin are under threat for the fragmented landscape pattern and the poorer connectivity.
Keywords: Land use, landscape pattern evolution, landscape pattern index, Fuxian Lake basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5834772 RBF Based Face Recognition and Expression Analysis
Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar
Abstract:
Facial recognition and expression analysis is rapidly becoming an area of intense interest in computer science and humancomputer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper skin and non-skin pixels were separated. Face regions were extracted from the detected skin regions. Facial expressions are analyzed from facial images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to identify the person and to classify the facial expressions. Our method reliably works even with faces, which carry heavy expressions.Keywords: Face Recognition, Radial Basis Function, Gabor Wavelet Transform, Discrete Cosine Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15944771 Information Tree - Establishment of Lifestyle-Based IT Visual Model
Authors: Chiung-Hui Chen
Abstract:
Traditional service channel is losing its edge due to emerging service technology. To establish interaction with the clients, the service industry is using effective mechanism to give clients direct access to services with emerging technologies. Thus, as service science receives attention, special and unique consumption pattern evolves; henceforth, leading to new market mechanism and influencing attitudes toward life and consumption patterns. The market demand for customized services is thus valued due to the emphasis of personal value, and is gradually changing the demand and supply relationship in the traditional industry. In respect of interior design service, in the process of traditional interior design, a designer converts to a concrete form the concept generated from the ideas and needs dictated by a user (client), by using his/her professional knowledge and drawing tool. The final product is generated through iterations of communication and modification, which is a very time-consuming process. Although this process has been accelerated with the help of computer graphics software today, repeated discussions and confirmations with users are still required to complete the task. In consideration of what is addressed above a space user’s life model is analyzed with visualization technique to create an interaction system modeled after interior design knowledge. The space user document intuitively personal life experience in a model requirement chart, allowing a researcher to analyze interrelation between analysis documents, identify the logic and the substance of data conversion. The repeated data which is documented are then transformed into design information for reuse and sharing. A professional interior designer may sort out the correlation among user’s preference, life pattern and design specification, thus deciding the critical design elements in the process of service design.
Keywords: Information Design, Life Model-Based, Aesthetic Computing, Communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17184770 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.
Keywords: Shape recognition, Arabic handwritten characters, regression curves, expectation maximization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7124769 Bidirectional Discriminant Supervised Locality Preserving Projection for Face Recognition
Abstract:
Dimensionality reduction and feature extraction are of crucial importance for achieving high efficiency in manipulating the high dimensional data. Two-dimensional discriminant locality preserving projection (2D-DLPP) and two-dimensional discriminant supervised LPP (2D-DSLPP) are two effective two-dimensional projection methods for dimensionality reduction and feature extraction of face image matrices. Since 2D-DLPP and 2D-DSLPP preserve the local structure information of the original data and exploit the discriminant information, they usually have good recognition performance. However, 2D-DLPP and 2D-DSLPP only employ single-sided projection, and thus the generated low dimensional data matrices have still many features. In this paper, by combining the discriminant supervised LPP with the bidirectional projection, we propose the bidirectional discriminant supervised LPP (BDSLPP). The left and right projection matrices for BDSLPP can be computed iteratively. Experimental results show that the proposed BDSLPP achieves higher recognition accuracy than 2D-DLPP, 2D-DSLPP, and bidirectional discriminant LPP (BDLPP).Keywords: Face recognition, dimension reduction, locality preserving projection, discriminant information, bidirectional projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6884768 Eyeball Motion Controlled Wheelchair Using IR Sensors
Authors: Monika Jain, Shikhar Puri, Shivali Unishree
Abstract:
This paper presents the ‘Eye Ball Motion Controlled Wheelchair using IR Sensors’ for the elderly and differently abled people. In this eye tracking based technology, three Proximity Infrared (IR) sensor modules are mounted on an eye frame to trace the movement of the iris. Since, IR sensors detect only white objects; a unique sequence of digital bits is generated corresponding to each eye movement. These signals are then processed via a micro controller IC (PIC18F452) to control the motors of the wheelchair. The potential and efficiency of previously developed rehabilitation systems that use head motion, chin control, sip-n-puff control, voice recognition, and EEG signals variedly have also been explored in detail. They were found to be inconvenient as they served either limited usability or non-affordability. After multiple regression analyses, the proposed design was developed as a cost-effective, flexible and stream-lined alternative for people who have trouble adopting conventional assistive technologies.Keywords: Eye tracking technology, Intelligent wheelchair, IR module, rehabilitation technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67384767 Dynamics and Feedback Control for a New Hyperchaotic System
Authors: Kejun Zhuang, Hailong Zhu
Abstract:
In this paper, stability and Hopf bifurcation analysis of a novel hyperchaotic system are investigated. Four feedback control strategies, the linear feedback control method, enhancing feedback control method, speed feedback control method and delayed feedback control method, are used to control the hyperchaotic attractor to unstable equilibrium. Moreover numerical simulations are given to verify the theoretical results.Keywords: Feedback control, Hopf bifurcation, hyperchaotic system, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17574766 An Introduction to Giulia Annalinda Neglia Viewpoint on Morphology of the Islamic City Using Written Content Analysis Approach
Authors: Mohammad Saber Eslamlou
Abstract:
Morphology of Islamic cities has been extensively studied by researchers. In this regard, there exist much difference in method of analysis, classification, recognition, confrontation and comparative method of urban morphology. The present paper aims to examine the previous methods, approaches and insights and how Dr. Giulia Annalinda Neglia dealt with the analysis of morphology of Islamic cities. Neglia is assistant professor in University of Bari, Italy (UNIBA) who has published numerous papers and books on Islamic cities. We introduce the works in the field of morphology of Islamic cities and then, her thoughts, insights and research methodologies are presented and analyzed in critical perspective. This is a qualitative research on her written works, which have been classified in three major categories. The present paper focuses mainly on her works regarding morphology and physical shape of Islamic cities. The results of her works’ review suggest that she has used Moratoria typology in investigating morphology of Islamic cities. Moreover, overall structure of the cities under investigation is often described linear; however, she is against to define a single framework for the recognition of morphology in Islamic cities. She believes that fabric of each region in the city follows from the principles of a specific period or urban pattern, in particular, Hellenistic and Roman structures. Furthermore, she believes that it is impossible to understand the morphology of a city without taking into account the obvious and hidden developments associated with it, because form of building and their surrounding open spaces are written history of the city.
Keywords: City, Islamic city, morphology of city, Giulia Annalinda Neglia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3384765 A Model-Free Robust Control Approach for Robot Manipulator
Authors: A. Izadbakhsh, M. M. Fateh
Abstract:
A model-free robust control (MFRC) approach is proposed for position control of robot manipulators in the state space. The control approach is verified analytically to be robust subject to uncertainties including external disturbances, unmodeled dynamics, and parametric uncertainties. There is a high flexibility to work on different systems including actuators by the use of the proposed control approach. The proposed control approach can guarantee the robustness of control system. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a satisfactory performance for control system under technical specifications. KeywordsModel-free, robust control, position control, PUMA 560.Keywords: Model-free, robust control, position control, PUMA 560.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21174764 A Preliminary Study on the Eventual Positivity of Irreducible Tridiagonal Sign Patterns
Authors: Berlin Yu
Abstract:
Motivated by Berman et al. [Sign patterns that allow eventual positivity, ELA, 19(2010): 108-120], we concentrate on the potential eventual positivity of irreducible tridiagonal sign patterns. The minimal potential eventual positivity of irreducible tridiagonal sign patterns of order less than six is established, and all the minimal potentially eventually positive tridiagonal sign patterns of order · 5 are identified. Our results indicate that if an irreducible tridiagonal sign pattern of order less than six A is minimal potentially eventually positive, then A requires the eventual positivity.
Keywords: Eventual positivity, potentially positive sign pattern, tridiagnoal sign pattern, minimal potentially positive sign pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12704763 Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware
Authors: Le Zhao, Alain Nogaret
Abstract:
We have built universal central pattern generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: The neuron response time and the strength of inhibitory connections.
Keywords: Central pattern generator, winnerless competition principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17504762 Thermal and Visual Performance of Solar Control Film
Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail
Abstract:
The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.Keywords: window, solar control film, natural ventilation, thermal performance, visual performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22654761 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns
Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim
Abstract:
In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.Keywords: Binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10154760 From Separatism to Coalition: Variants in Language Politics and Leadership Pattern in Dravidian Movement
Authors: Subramaniam Chandran
Abstract:
This paper describes the evolution of language politics and the part played by political leaders with reference to the Dravidian parties in Tamil Nadu. It explores the interesting evolution from separatism to coalition in sustaining the values of parliamentary democracy and federalism. It seems that the appropriation of language politics is fully ascribed to the DMK leadership under Annadurai and Karunanidhi. For them, the Tamil language is a self-determining power, a terrain of nationhood, and a perennial source of social and political powers. The DMK remains a symbol of Tamil nationalist party playing language politics in the interest of the Tamils. Though electoral alliances largely determine the success, the language politics still has significant space in the politics of Tamil Nadu. Ironically, DMK moves from the periphery to centre for getting national recognition for the Tamils as well as for its own maximization of power. The evolution can be seen in two major phases as: language politics for party building; and language politics for state building with three successive political processes, namely, language politics in the process of separatism, representative politics and coalition. The much pronounced Dravidian Movement is radical enough to democratize the party ideology to survive the spirit of parliamentary democracy. This has secured its own rewards in terms of political power. The political power provides the means to achieve the social and political goal of the political party. Language politics and leadership pattern actualized this trend though the movement is shifted from separatism to coalition.Keywords: Language politics, cultural nationalism, leadership, social justice
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19614759 Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam, Shahid Nawaz
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image processing, real-time recognition, weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21624758 Feature's Extraction of Human Body Composition in Images by Segmentation Method
Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani
Abstract:
Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.
Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27704757 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions
Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*
Abstract:
Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18924756 Quantification of Heart Rate Variability: A Measure based on Unique Heart Rates
Authors: V. I. Thajudin Ahamed, P. Dhanasekaran, A. Naseem, N. G. Karthick, T. K. Abdul Jaleel, Paul K.Joseph
Abstract:
It is established that the instantaneous heart rate (HR) of healthy humans keeps on changing. Analysis of heart rate variability (HRV) has become a popular non invasive tool for assessing the activities of autonomic nervous system. Depressed HRV has been found in several disorders, like diabetes mellitus (DM) and coronary artery disease, characterised by autonomic nervous dysfunction. A new technique, which searches for pattern repeatability in a time series, is proposed specifically for the analysis of heart rate data. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are compared with approximate entropy and sample entropy. In our analysis, based on the method developed, it is observed that heart rate variability is significantly different for DM patients, particularly for patients with diabetic foot ulcer.
Keywords: Autonomic nervous system, diabetes mellitus, heart rate variability, pattern identification, sample entropy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908