Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware

Authors: Le Zhao, Alain Nogaret

Abstract:

We have built universal central pattern generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: The neuron response time and the strength of inhibitory connections.

Keywords: Central pattern generator, winnerless competition principle.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092287

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756

References:


[1] A. Hess, L.C.Yu, I. klein, M. De Mazancourt, G. Jebrak, H. Mal, O. Brugiere, M. Fournier, M. Courbage, G. Dauriat, E. Schouman-Clayes, C. Clerici, L. Mangin, "Neural mechanisms Underlying Beathing Complexiy”, PLoS ONE 8, e7740(2013).
[2] O. Kiehn, Ann. "Locomotor circuits in the mammalian spinal cord", Rev. Neurosci. 29, 279 (2006).
[3] E. Marder, and R. L. Calabrese, "Principles of rhythmic motor pattern generation" Physiol. Rev. 76, 687 (1996).
[4] M. I. Rabinovich, P. Varona, A. I. Selverston, H. D. I. Abarbanel, "Dynamical principles in neuroscience", Rev. Mod. Phys. 78, 1213 (2006).
[5] A. J. Ijspeert, "Central pattern generator for locomotion control in animals and robots: A reveiw", Neural Networkds 21, 642 (2008).
[6] S. Grillner, "Biological pattern generation: The cellular and computational logic of networkds in motion", Neuron 52, 751 (2006).
[7] J. Wojcik, R. Clewley, and A. Shilnikov, "Order parameter for bursting polyrhythms in multifunctional central pattern generators", Phys. Rev, E 83, 056209 (2011).
[8] M. Mahowald, and R. Douglas, "A silicon neuron", Nature 354, 515 (1991).
[9] M. Rabinovich, A. Volkovskii, P. Lecanda, R. Huerta, H.D.I.Abarbanel, "Dynamical encoding by networks of competing neuron groups: Winnerless competition", Phys Rev Lett 87, 068102 (2001).
[10] G. Laurent, M. Stopfer, R. W. friedrich, M. I. Rabinovich, A. Volkovskii, H.D. I. Abarbanel, "Odor encoding as an active, dynamical process: Experiments, computation, and theory", Ann. Rev. Neurosci. 24, 263 (2001).
[11] R. Latorre, C. Aguirre, M. I Rabinovich, P. Varona, "Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns", Front. Neur. Circ. 7, 138 (2013).
[12] M. Dhamala, V. K. Jirsa, and M. Z. Ding, "Transitions to synchrony in coupled bursting neurons", Phys. Rev. Lett. 92, 074104 (2004).
[13] A. Nogaret, L. Zhao, D.J.A. Moraes, "Modulation of respiratory sinus arrhythmia in rats with central pattern generator hardware", J. Paton, J. NeuroSci. Meth. 212, 124 (2013).
[14] A.V.M. Herz, T. Gollisch, C.K. Machens, D. Jaeger, "Modeling single-neuron dynamics and computations: A balance of detail and abstraction”, Science 314, 80 (2006).
[15] A. L. Hodgkin and A. F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol. 117, 500-544 (1952).