Search results for: Access algorithm
3847 Design and Simulation of Low Speed Axial Flux Permanent Magnet (AFPM) Machine
Authors: Ahmad Darabi, Hassan Moradi, Hossein Azarinfar
Abstract:
In this paper presented initial design of Low Speed Axial Flux Permanent Magnet (AFPM) Machine with Non-Slotted TORUS topology type by use of certain algorithm (Appendix). Validation of design algorithm studied by means of selected data of an initial prototype machine. Analytically design calculation carried out by means of design algorithm and obtained results compared with results of Finite Element Method (FEM).Keywords: Axial Flux Permanent Magnet (AFPM) Machine, Design Algorithm, Finite Element Method (FEM), TORUS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33043846 Levenberg-Marquardt Algorithm for Karachi Stock Exchange Share Rates Forecasting
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data.
Keywords: Gradient descent method, jacobian matrix.Levenberg-Marquardt algorithm, quadratic error surfaces,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24743845 A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm
Abstract:
With the increasing complexity of engineering problems, the traditional, single-objective and deterministic optimization method can not meet people-s requirements. A multi-objective fuzzy optimization model of resource input is built for M chlor-alkali chemical eco-industrial park in this paper. First, the model is changed into the form that can be solved by genetic algorithm using fuzzy theory. And then, a fitness function is constructed for genetic algorithm. Finally, a numerical example is presented to show that the method compared with traditional single-objective optimization method is more practical and efficient.Keywords: Fitness function, genetic algorithm, multi-objectivefuzzy optimization, satisfaction degree membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13553844 Adaptive Total Variation Based on Feature Scale
Authors: Jianbo Hu, Hongbao Wang
Abstract:
The widely used Total Variation de-noising algorithm can preserve sharp edge, while removing noise. However, since fixed regularization parameter over entire image, small details and textures are often lost in the process. In this paper, we propose a modified Total Variation algorithm to better preserve smaller-scaled features. This is done by allowing an adaptive regularization parameter to control the amount of de-noising in any region of image, according to relative information of local feature scale. Experimental results demonstrate the efficient of the proposed algorithm. Compared with standard Total Variation, our algorithm can better preserve smaller-scaled features and show better performance.
Keywords: Adaptive, de-noising, feature scale, regularizationparameter, Total Variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12373843 A General Mandatory Access Control Framework in Distributed Environments
Authors: Feng Yang, Xuehai Zhou, Dalei Hu
Abstract:
In this paper, we propose a general mandatory access framework for distributed systems. The framework can be applied into multiple operating systems and can handle multiple stakeholders. Despite considerable advancements in the area of mandatory access control, a certain approach to enforcing mandatory access control can only be applied in a specific operating system. Other than PC market in which windows captures the overwhelming shares, there are a number of popular operating systems in the emerging smart phone environment, i.e. Android, Windows mobile, Symbian, RIM. It should be noted that more and more stakeholders are involved in smartphone software, such as devices owners, service providers and application providers. Our framework includes three parts—local decision layer, the middle layer and the remote decision layer. The middle layer takes charge of managing security contexts, OS API, operations and policy combination. The design of the remote decision layer doesn’t depend on certain operating systems because of the middle layer’s existence. We implement the framework in windows, linux and other popular embedded systems.
Keywords: Mandatory Access Control, Distributed System, General Platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22313842 A Modified Fuzzy C-Means Algorithm for Natural Data Exploration
Authors: Binu Thomas, Raju G., Sonam Wangmo
Abstract:
In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.Keywords: Adaptive fuzzy clustering, clustering, fuzzy logic, fuzzy clustering, c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19903841 A Meta-Heuristic Algorithm for Vertex Covering Problem Based on Gravity
Authors: S. Raja Balachandar, K.Kannan
Abstract:
A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving vertex covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the vertex covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.
Keywords: Vertex covering Problem, Velocity, Gravitational Force, Newton's Law, Meta Heuristic, Combinatorial optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20103840 Algorithm Design and Performance Evaluation of Equivalent CMOS Model
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Inderpreet Kaur, Birinderjit S. Kalyan
Abstract:
This work is a proposed model of CMOS for which the algorithm has been created and then the performance evaluation of this proposition has been done. In this context, another commonly used model called ZSTT (Zero Switching Time Transient) model is chosen to compare all the vital features and the results for the Proposed Equivalent CMOS are promising. In the end, the excerpts of the created algorithm are also includedKeywords: Dual Capacitor Model, ZSTT, CMOS, SPICEMacro-Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13313839 A Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions
Authors: Leehter Yao, Kuei-Song Weng, Cherng-Dir Huang
Abstract:
A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able toadapt the distance norm to the underlying distribution of the prototypedata points except that the sizes of ellipsoids need to be determined a priori. To overcome GKA's inability to determine appropriate size ofellipsoid, the genetic algorithm (GA) is applied to learn the size ofellipsoid. With GA combined with GKA, it will be shown in this paper that the proposed method outperforms the benchmark algorithms as well as algorithms in the field.
Keywords: Ellipsoids, genetic algorithm, classification, fuzzyc-means (FCM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16933838 A Hybrid CamShift and l1-Minimization Video Tracking Algorithm
Authors: Clark Van Dam, Gagan Mirchandani
Abstract:
The Continuously Adaptive Mean-Shift (CamShift) algorithm, incorporating scene depth information is combined with the l1-minimization sparse representation based method to form a hybrid kernel and state space-based tracking algorithm. We take advantage of the increased efficiency of the former with the robustness to occlusion property of the latter. A simple interchange scheme transfers control between algorithms based upon drift and occlusion likelihood. It is quantified by the projection of target candidates onto a depth map of the 2D scene obtained with a low cost stereo vision webcam. Results are improved tracking in terms of drift over each algorithm individually, in a challenging practical outdoor multiple occlusion test case.Keywords: CamShift, l1-minimization, particle filter, stereo vision, video tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20423837 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems
Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo
Abstract:
The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16833836 A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves
Authors: Hanan Ahmed-Hosni Mahmoud, Nadia Al-Ghreimil
Abstract:
In-place sorting algorithms play an important role in many fields such as very large database systems, data warehouses, data mining, etc. Such algorithms maximize the size of data that can be processed in main memory without input/output operations. In this paper, a novel in-place sorting algorithm is presented. The algorithm comprises two phases; rearranging the input unsorted array in place, resulting segments that are ordered relative to each other but whose elements are yet to be sorted. The first phase requires linear time, while, in the second phase, elements of each segment are sorted inplace in the order of z log (z), where z is the size of the segment, and O(1) auxiliary storage. The algorithm performs, in the worst case, for an array of size n, an O(n log z) element comparisons and O(n log z) element moves. Further, no auxiliary arithmetic operations with indices are required. Besides these theoretical achievements of this algorithm, it is of practical interest, because of its simplicity. Experimental results also show that it outperforms other in-place sorting algorithms. Finally, the analysis of time and space complexity, and required number of moves are presented, along with the auxiliary storage requirements of the proposed algorithm.
Keywords: Auxiliary storage sorting, in-place sorting, sorting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19093835 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.
Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21333834 An Iterative Algorithm for KLDA Classifier
Authors: D.N. Zheng, J.X. Wang, Y.N. Zhao, Z.H. Yang
Abstract:
The Linear discriminant analysis (LDA) can be generalized into a nonlinear form - kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experiments show that it has a comparable performance with SVM.Keywords: Linear discriminant analysis (LDA), kernel LDA (KLDA), conjugate gradient algorithm, nonlinear discriminant classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19573833 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm
Authors: Ali Ridho Barakbah, Yasushi Kiyoki
Abstract:
This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33723832 Approximation Algorithm for the Shortest Approximate Common Superstring Problem
Authors: A.S. Rebaï, M. Elloumi
Abstract:
The Shortest Approximate Common Superstring (SACS) problem is : Given a set of strings f={w1, w2, ... , wn}, where no wi is an approximate substring of wj, i ≠ j, find a shortest string Sa, such that, every string of f is an approximate substring of Sa. When the number of the strings n>2, the SACS problem becomes NP-complete. In this paper, we present a greedy approximation SACS algorithm. Our algorithm is a 1/2-approximation for the SACS problem. It is of complexity O(n2*(l2+log(n))) in computing time, where n is the number of the strings and l is the length of a string. Our SACS algorithm is based on computation of the Length of the Approximate Longest Overlap (LALO).Keywords: Shortest approximate common superstring, approximation algorithms, strings overlaps, complexities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15063831 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem
Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota
Abstract:
Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.
Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23373830 A New Method in Detection of Ceramic Tiles Color Defects Using Genetic C-Means Algorithm
Authors: Mahkameh S. Mostafavi
Abstract:
In this paper an algorithm is used to detect the color defects of ceramic tiles. First the image of a normal tile is clustered using GCMA; Genetic C-means Clustering Algorithm; those results in best cluster centers. C-means is a common clustering algorithm which optimizes an objective function, based on a measure between data points and the cluster centers in the data space. Here the objective function describes the mean square error. After finding the best centers, each pixel of the image is assigned to the cluster with closest cluster center. Then, the maximum errors of clusters are computed. For each cluster, max error is the maximum distance between its center and all the pixels which belong to it. After computing errors all the pixels of defected tile image are clustered based on the centers obtained from normal tile image in previous stage. Pixels which their distance from their cluster center is more than the maximum error of that cluster are considered as defected pixels.
Keywords: C-Means algorithm, color spaces, Genetic Algorithm, image clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16513829 An efficient Activity Network Reduction Algorithm based on the Label Correcting Tracing Algorithm
Authors: Weng Ming Chu
Abstract:
When faced with stochastic networks with an uncertain duration for their activities, the securing of network completion time becomes problematical, not only because of the non-identical pdf of duration for each node, but also because of the interdependence of network paths. As evidenced by Adlakha & Kulkarni [1], many methods and algorithms have been put forward in attempt to resolve this issue, but most have encountered this same large-size network problem. Therefore, in this research, we focus on network reduction through a Series/Parallel combined mechanism. Our suggested algorithm, named the Activity Network Reduction Algorithm (ANRA), can efficiently transfer a large-size network into an S/P Irreducible Network (SPIN). SPIN can enhance stochastic network analysis, as well as serve as the judgment of symmetry for the Graph Theory.Keywords: Series/Parallel network, Stochastic network, Network reduction, Interdictive Graph, Complexity Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13793828 An Enhanced Cryptanalytic Attack on Knapsack Cipher using Genetic Algorithm
Authors: Poonam Garg, Aditya Shastri, D.C. Agarwal
Abstract:
With the exponential growth of networked system and application such as eCommerce, the demand for effective internet security is increasing. Cryptology is the science and study of systems for secret communication. It consists of two complementary fields of study: cryptography and cryptanalysis. The application of genetic algorithms in the cryptanalysis of knapsack ciphers is suggested by Spillman [7]. In order to improve the efficiency of genetic algorithm attack on knapsack cipher, the previously published attack was enhanced and re-implemented with variation of initial assumptions and results are compared with Spillman results. The experimental result of research indicates that the efficiency of genetic algorithm attack on knapsack cipher can be improved with variation of initial assumption.Keywords: Genetic Algorithm, Knapsack cipher, Key search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16973827 Access of Small and Medium Enterprises to Finance in Rural Areas: Case of Indonesia and Thailand
Authors: N. Ikasari, T. Sumransat, U. Eko, R. Kusumastuti
Abstract:
Small and medium enterprises (SMEs) are regarded as the engine for economic development, notwithstanding their continuous financing conundrum. In the case of developing countries, access to finance is a reflection of the effectiveness of government policy. The widely accepted perspective to assess small businesses’ access to finance is that of economic view. The existing body of literature presents access to finance in three dimensions; they are accessibility, eligibility and affordability. Within this perspective, the role of socio-cultural has not explored. This study is aimed at investigating the existence of any socio-cultural factors within access to finance issue in Asian countries where governance is enriched by countries’ values and beliefs. The significance of this study is the instigation of supplementary dimension to assess access to finance that eventually contributes to the development of micro-finance policy. Indonesia and Thailand are selected as cases in point, where distinction is drawn on the level of cultural diversity and micro-finance policy in respective country. A questionnaire is used to collect information related to the three dimensions of access to finance as well as to explore alternative financing reasoning to elaborate the issue from the demand side. Questionnaires are distributed to 60 small business owners operating in Indonesia and the same number in Thailand. In order to present a complete understanding on the matter at hand, interviews with banks are conducted to capture the perspective as presented by the supply side. Research findings show that small business owners and banks in Indonesia and Thailand are in agreement that access to finance is not deemed as an issue. However, trust issue that exists mutually between financing users and providers leads small business owners in Indonesia to look for alternative financing other than banks. The findings contribute to the refinement of micro-financing policy in Indonesia and Thailand.
Keywords: Access to finance, Indonesia, small and medium enterprises, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19763826 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators
Authors: Engy A. Mohamed, Yasser G. Hegazy
Abstract:
This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.Keywords: Comulative distribution function, distributed generation, Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24833825 Vision Based People Tracking System
Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti
Abstract:
In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.
Keywords: Camshift Algorithm, Computer Vision, Kalman Filter, Object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13343824 Sensor-Based Motion Planning for a Car-like Robot Based On Bug Family Algorithms
Authors: Dong-Hyung Kim, Ji Yeong Lee, Chang-Soo Han
Abstract:
This paper presents a sensor-based motion planning algorithm for 3-DOF car-like robots with a nonholonomic constraint. Similar to the classic Bug family algorithms, the proposed algorithm enables the car-like robot to navigate in a completely unknown environment using only the range sensor information. The car-like robot uses the local range sensor view to determine the local path so that it moves towards the goal. To guarantee that the robot can approach the goal, the two modes of motion are repeated, termed motion-to-goal and wall-following. The motion-to-goal behavior lets the robot directly move toward the goal, and the wall-following behavior makes the robot circumnavigate the obstacle boundary until it meets the leaving condition. For each behavior, the nonholonomic motion for the car-like robot is planned in terms of the instantaneous turning radius. The proposed algorithm is implemented to the real robot and the experimental results show the performance of proposed algorithm.
Keywords: Motion planning, car-like robot, bug algorithm, autonomous motion planning, nonholonomic constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22373823 Edit Distance Algorithm to Increase Storage Efficiency of Javanese Corpora
Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy
Abstract:
Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).Keywords: edit distance coefficient, Javanese, parallel text alignment, phrase pair combination
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17283822 Discovering User Behaviour Patterns from Web Log Analysis to Enhance the Accessibility and Usability of Website
Authors: Harpreet Singh
Abstract:
Finding relevant information on the World Wide Web is becoming highly challenging day by day. Web usage mining is used for the extraction of relevant and useful knowledge, such as user behaviour patterns, from web access log records. Web access log records all the requests for individual files that the users have requested from the website. Web usage mining is important for Customer Relationship Management (CRM), as it can ensure customer satisfaction as far as the interaction between the customer and the organization is concerned. Web usage mining is helpful in improving website structure or design as per the user’s requirement by analyzing the access log file of a website through a log analyzer tool. The focus of this paper is to enhance the accessibility and usability of a guitar selling web site by analyzing their access log through Deep Log Analyzer tool. The results show that the maximum number of users is from the United States and that they use Opera 9.8 web browser and the Windows XP operating system.
Keywords: Web usage mining, log file, web mining, data mining, deep log analyser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10623821 Ant Colony Optimization for Optimal Distributed Generation in Distribution Systems
Authors: I. A. Farhat
Abstract:
The problem of optimal planning of multiple sources of distributed generation (DG) in distribution networks is treated in this paper using an improved Ant Colony Optimization algorithm (ACO). This objective of this problem is to determine the DG optimal size and location that in order to minimize the network real power losses. Considering the multiple sources of DG, both size and location are simultaneously optimized in a single run of the proposed ACO algorithm. The various practical constraints of the problem are taken into consideration by the problem formulation and the algorithm implementation. A radial power flow algorithm for distribution networks is adopted and applied to satisfy these constraints. To validate the proposed technique and demonstrate its effectiveness, the well-know 69-bus feeder standard test system is employed.cm.
Keywords: About Ant Colony Optimization (ACO), Distributed Generation (DG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32803820 Iterative solutions to the linear matrix equation AXB + CXTD = E
Authors: Yongxin Yuan, Jiashang Jiang
Abstract:
In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXTD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative algorithm is quite efficient.Keywords: matrix equation, iterative algorithm, parameter estimation, minimum norm solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15553819 Statistical Genetic Algorithm
Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh
Abstract:
Adaptive Genetic Algorithms extend the Standard Gas to use dynamic procedures to apply evolutionary operators such as crossover, mutation and selection. In this paper, we try to propose a new adaptive genetic algorithm, which is based on the statistical information of the population as a guideline to tune its crossover, selection and mutation operators. This algorithms is called Statistical Genetic Algorithm and is compared with traditional GA in some benchmark problems.Keywords: Genetic Algorithms, Statistical Information ofthe Population, PAUX, SSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17543818 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.
Keywords: Cuckoo search algorithm, optimization, power system, var compensators, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347