
 

 

 
Abstract—With the exponential growth of networked system and 

application such as eCommerce, the demand for effective internet 
security is increasing. Cryptology is the science and study of systems 
for secret communication. It consists of two complementary fields of 
study: cryptography and cryptanalysis. The application of genetic 
algorithms in the cryptanalysis of knapsack ciphers is suggested by 
Spillman [7]. In order to improve the efficiency of genetic algorithm 
attack on knapsack cipher, the previously published attack was 
enhanced and re-implemented with variation of initial assumptions 
and results are compared with  Spillman results. The experimental 
result of research indicates that the efficiency of genetic algorithm 
attack on knapsack cipher can be improved with variation of initial 
assumption. 

 
Keywords—Genetic Algorithm, Knapsack cipher, Key search.  

I. INTRODUCTION 
HE demand for effective internet security is increasing 
exponentially day by day. Businesses have an obligation 

to protect sensitive data from loss or theft. Such sensitive data 
can be potentially damaging if it is altered, destroyed, or if it 
falls into the wrong hands. So they need to develop a scheme 
that guarantees to protect the information from the attacker.  

Cryptology is at the heart of providing such guarantee.  
Cryptology is the science of building and analyzing different 
encryption and decryption methods. Cryptology consists of 
two subfields; Cryptography & Cryptanalysis. Cryptography 
is the science of building new powerful and efficient 
encryption and decryption methods. It deals with the 
techniques for conveying information securely. The basic aim 
of cryptography is to allow the intended recipients of a 
message to receive the message properly while preventing 
eavesdroppers from understanding the message. Cryptanalysis 
is the science and study of method of breaking cryptographic 
techniques i.e. ciphers. In other words it can be described as 
the process of searching for flaws or oversights in the design 
of ciphers.  

The application of genetic algorithms in the cryptanalysis of 
knapsack ciphers is suggested by Spillman [7]. 

II. KNAPSACK CIPHER 
One of first knapsack cipher was proposed by Markle and  
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Hellman in 1975 which utilized a NP-complete problem for its  
security. 

 The knapsack problem is formulated as follows. Let us 
assume the values M1, M2……….. Mn and the sum S are given. 
Let it be necessary to compute values b1, b2…..bn values, so 
that S= M1b1 +M1b1……… +Mnbn. The values of coefficient bi 
can be equal 0 or 1. The 1 value shows that object will fit into 
the knapsack, 0 values will not in the knapsack. 

The Markle-Hellman knapsack cipher encrypts a message 
as a knapsack problem.  The plaintext block transforms into 
binary string (the length of block is equal number of elements 
in knapsack sequence). One value determines that an element 
will be in target sum. This sum is a ciphered message. Table I 
shows an example of solving the knapsack problem for the 
entry numbers sequence: 1 3 6 13   27 and 52. 
 

TABLE I  
EXAMPLE OF KNAPSACK ENCRYPTION 

Plaintext Knapsack 
sequence 

Ciphertext 

1  1  1  0  0  1 1  3  6 13   27 52 1+3+6+52=  62 
0  1  0  1  1  0 1  3  6 13   27 52 3+13+27   = 43 
0  0  0  0  0  1 1  3  6 13   27 52 52           =  52 

 
The public/private key aspect of this approach lies in the 

fact that there are actually two different knapsack problems – 
referred to as the easy Knapsack and hard knapsack. The 
Markle-Hellman algorithm is based on this property. The 
private key is a sequence of number for a superincreasing 
knapsack problem. The public key is a sequence of number 
for a normal knapsack problem with the same solution.  

Easy knapsacks have a sequence of numbers that are 
superincreasing - that is, each number is greater then the sum 

of previous numbers : ∑
−

=

>
1

1

i

j
ji aa  for i=2,……,n(where ia  

is i-th element of the sequence) . For example 
{1,3,6,13,27,52} is a superincreasing sequence but 
{1,3,4,9,15,25} is not.  The knapsack solution with the 
superincreasing sequence proceeds as follows. The target sum 
is compared with a greatest number in the sequence. If the 
target sum is smaller, than this number, the knapsack will not 
fill, otherwise it will. Then the smaller element is subtracted 
from the target sum, and the result of the subtraction, is 
compared with next element. Such operation is done until the 
smallest number of sequence is reached. If the target sum is 
reduced to 0 value, than solution exists. In other case solution 
doesn’t exist. For example, consider a total knapsack target 
sum is 70 and the sequence of weights of {2, 3, 6, 13, 27, and 
52}. The largest weight, 52, is less then 70, so 52 are in the 

An Enhanced Cryptanalytic Attack on Knapsack 
Cipher using Genetic Algorithm 

Poonam Garg, Aditya Shastri, and D.C. Agarwal 

T 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007 

4071International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

02
8.

pd
f



 

 

knapsack, Subtracting 52 from 70 leaves 18. The next number 
27 is greater than 18, so 27 is not in the knapsack. The next 
weight 13 is less than 18, so 13 is in the knapsack. Subtracting 
13 from 18 leaves 5. The next weight, 6, is greater than 5, so 6 
are not in the knapsack. Continuing this process will show that 
both 2 and 3 are in the knapsack and the total weight is 
brought to 0, which indicates that a solution has been found. 
The plaintext that resulted from a ciphertext value of 70 would 
be 110101. The superincreasing knapsack is easy to decode, 
which means that it does not protect the data. Anyone can 
recover the bit pattern from the target sum for a 
superincreasing knapsack if the elements of the 
superincreasing knapsack are known. 

Markle and Hellman suggested that such a simple knapsack 
be converted into a trapdoor knapsack which is difficult to 
break. The algorithm work as follows : 

 
1. Select a simple knapsack sequence. Elements make a 

superincreasing A’=( ''
2

'
1 ..... naaa + ) 

2. Select an integer value m greater than sum of all elements 
of superincreasing sequence. 

3. Select another inter w that the gcd(m,w)=1, that is 
number m and w are reciprocally prime. 

4. Find the inverse of the w mod m – w-1  
5. Construct the hard knapsack sequence A=wA’ mod m i.e. 

ai=w '
ia  mod m 

The trapdoor sequence A could be published as a public 
key (encryption key). The private (secret) key for this cipher 
consists of a simple knapsack sequence A’, so-called trapdoor, 
values m,w,w-1 

The encoding is done as follows. The message divides into 
n bits block (each block contains as many element as simple 
knapsack sequence). Values in the message block shows that 
the element will be in the target sum. The target sum of each 
block is ciphertext. 

The decoding consists of the following. Each number of the 
ciphered message is multiplied through w-1mod m and the 
result of this operation is plaintext. 

III.  FITNESS FUNCTION 
Spillman [7] proposed the fitness measure given in Equation 
1.  
 

Fitness =
⎪
⎩
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                            (1)  

Let M={m1,m2 ……. mn), mi ∈  {0,1} be an arbitrary solution 
and the public key  
 
A= {a1, a2 ……. an} 

Sum= j

n

j
j ma∑

=1

        Target =∑
j

ja ' ,     FullSum=∑
=

n

j
ja

1

, 

               MaxDiff = max {Target, FullSum – Target}  

IV.  METHODOLOGY: AN ENHANCED CRYPTANALYTIC 
ATTACK ON KNAPSACK CIPHER USING GENETIC ALGORITHM 

The cryptanalysis starts from cipher text, which has an 
integer form. Each number represents a target sum of hard 
knapsack problem. The goal of the genetic algorithm is to 
translate each number into the correct knapsack, which 
represents the ASCII code for the plaintext characters.  

 
Encoding  
The certain restrictions are defined on the encoding 

algorithm: 
(1) Only the ASCII code will be encrypted. 
(2) The superincreasing sequence will have 8 elements; these 

number of elements guarantee that each character has a 
unique encoding (There are 256 ASCII codes and 8 
elements length will allow to encrypt 28 characters), but 
this length is not safe (security key has to have 100 
length); 

(3) Plaintext has not more then 100 character length. 
 

Initialization 
A random population of chromosomes (binary string 0’s 

and 1’s) is generated. The size of the population has range in 
between 10 to 100. The number of bits in each chromosome is 
equal to the number of elements key (i.e. 8). 

 
Evaluation 
Based on the fitness function given in equation 1 the fitness 

value evaluates how the given sum is close to the target value 
for the knapsack. The value of the fitness function should be 
in the range of 0 to 1.  Fitness value 1 indicates an exact 
match with the target sum for the knapsack.   If the value of 
sum is greater then targets then it have a lower fitness value of 
chromosome, in this way it produces the infeasible solution. If 
the value of sum is less then target then it will produce a high 
fitness value and produce feasible solutions. Feasible solutions 
have a greater chance of being followed by the algorithm. 

 
Selection 
The important part of algorithm is selection of a new 

population. The convergence of the algorithm can be delayed 
or speed up it depends on how the criterion of selection 
defined. Two selection methods are applied here: elitist 
method and classical method. Hence, the 25% the best 
chromosome with parents population move to next population, 
the rest 75% choose after classical methods. The best 
chromosome of each population will preserve and not used in 
crossover operation or mutation process. Therefore, the results 
will not make it worse in the next population. 

 
Crossover 
The one-point crossover operation applied in the algorithm. 
 
Mutation 
The mutation process moves between two random points. 

The mutation probability has to be small. The mutation helps 
to prevent the algorithm from being stuck in a local optimal 
point. 

if Sum ≤ Target 
 
if Sum > Target 
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Stop (Terminating) condition 
After executing the above mentioned steps a new 

generation is created and the steps are repeated until the stop 
condition is reached.  Two variants of stop conditions are 
applied. In the variant-I, the algorithm will stops when the 
fitness function reaches to the value 1. In the variant - II the 
algorithm will stop either the fitness function reaches to the 
value 1 or generates 200 populations.   

Fig. 1 describes the complete steps of genetic algorithm that 
utilizes in the attack of knapsack cipher. 
 
1. A random population of chromosomes (binary string 0’s 

and 1’s) is generated. The size of the population has 
range between 10 and 100. The number of bits in each 
chromosome is equal to the number of elements key 
(that is 8). 

2. A fitness value   for each chromosome in the population is 
determined with the help of equation 1. 

3. The new population is created. 
4. The crossover operation is made. 
5. The mutation process is executed. 
6. Repeat step 2 for the new population of chromosomes.    
 

Fig. 1 Genetic algorithm attack on knapsack cipher 
 

V.  RESULTS AND DISCUSSIONS 

An experimental result for the genetic algorithms was 
generated with 5 runs per data point using ‘C’ language.  
Genetic algorithm attack is run with variant-I & variant-II for 
each target sum mentioned in Table II. Each attack is run 5 
times with constant entry parameters i.e. size of population is 
75, crossover probability is 0.80, and mutation probability is 
0.11 and then results are averaged. 

The 8-elements (Spillman used 15 elements) sequence of 
hard knapsack problem (21031 63093 16371 11711 23422 
58555 16615 54322) is used to encode 8 bits ASCII code. 
This sequence has been created from superincreasing 
sequence (1 3 7 13 26 65 119 267), u equal to 65423 and w 
integer equal  21031 (w-1 = 5363). The MACRO word has 
been encrypted. The Table II shows the result of encoding. 
 

 
TABLE II  

ENCRYPTION BY KNAPSACK 
Character ASCII Code Target sum 

(ciphertext) 
M 10110010 65728 
A 10000010 37646 
C 11000010 100739 
R 01001010 103130 
O 11110010 128821 

 
 

The Tables III and Table IV show the experimental results 
with variant –I (P is population with search result, % is 
percentage of search space) and variant-II (P is population 
with search result; %  is the percentage of search space, E is 

the Error i.e.  difference between target sum and find sum) as 
a stop a condition.  

Table III shows that, the solution with variant –I always 
gives correct solution because the population is generated till 
the result is not erroneous. On an average 115 populations are 
enough for reaching to the correct results. Table IV with 
variant-II shows that 43 populations are enough but the 
solutions can be incorrect because of burdened error. 

 
TABLE III  

EXPERIMENTAL RESULTS WITH VARIANT – I 
  Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Avg 

Char P % P % P % P % P % P % 

M 13 47.7 2 29.1 68 49.8 1 24.4 1 25.8 17 35.3 

A 226 70.5 67 53.7 1 26.3 1 24.4 265 70.5 112 49.1 

C 173 66.2 48 55.6 1 27.8 279 73.4 853 95.1 271 63.6 

R 290 70.1 4 36.5 108 68.4 44 51.2 1 27.3 89.4 50.7 

O 2 25.6 1 26.6 210 62.3 1 25 222 63.5 87.2 40.6 

Sum 115 47.9 

 
TABLE IV  

EXPERIMENTAL RESULTS WITH VARIANT –II 
  Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Avg. 

Char P % E P % E P % E P % E P % E P % %E

M 3 1.5 0 124 62 0 5 2.5 0 67 33.5 0 143 71.5 2635 68.4 34.2 20

A 65 32.5 0 1 0.5 2513 88 44 244 7 3.5 2513 7 3.5 244 33.6 16.8 80

C 1 0.5 0 67 33.5 0 162 81 0 2 1 0 115 57.5 0 69.4 34.7 0

R 1 0.5 244 132 66 0 1 0.5 0 1 0.5 2391 82 41 0 43.4 21.7 40

O 1 0.5 0 1 0.5 0 1 0.5 0 5 2.5 0 2 1 30229 2 1 20

Sum 43.32 21.7 32

 
The results shown in Table III are compared and analyzed 

with Spillman’s results (Table V). Spillman’s algorithm 
always gives correct results similar to results as obtained by us 
(Table III). 

 
TABLE V 

SPILLMAN’S RESULTS 
Character #chromosome % of search 

space 
M 810 2.0 
A 80 0.2 
C 1860 6.0 
R 460 1.0 
O 650 .1 

Average 650 1.9 
 
In our experiment average 115 populations gives the correct 

result and the average percentage of search space is near 50%. 
The Spillman’s algorithm (Table V) searches on average less 
than 2% of the space. The divergence of the result is explained 
that the area of possible results in Spillman’s work is 215 i.e. 
32678 and in our work it is 28.  The convergence of results is 
shown in Fig. 2. 
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Fig. 2 The comparison of own result with Spillman’s result 

These results indicate that Spillman’s results were distinctly 
suboptimal and the variation of initial assumptions could 
readily improve the result.  

 
VI.  CONCLUSION 

This paper presents the genetic algorithm attack on the 
knapsack cipher. This paper also indicates that the efficiency 
of genetic algorithm attack on knapsack cipher can be 
improved by variation of initial assumptions like mutation, 
crossover operation and size of population. The great size of 
population, high crossover probability and a small mutation 
probability are the most optimal arrangements for GA. The 
results are worse when the size of population and crossover 
operator decreases, and when the coefficient mutation 
increases. Wrong coefficients destroy the chromosomes that 
are well-selected. In our experiment average 115 populations 
gives the correct result and the average percentage of search 
space is near 50%. The Spillman’s algorithm searches on 
average less than 2% of the search space. Experimental results 
indicate that Spillman’s results[7] were distinctly suboptimal 
and the variation of initial assumptions could readily improve 
the result. The genetic algorithm offers a powerful tool for the 
cryptanalysis of knapsack cipher.   
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