Search results for: Optimal node placement and Wireless sensor networks.
239 Flow Discharge Determination in Straight Compound Channels Using ANNs
Authors: A. Zahiri, A. A. Dehghani
Abstract:
Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.Keywords: ANN model, compound channels, divided channel method (DCM), flow rating curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558238 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.
Keywords: Algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372237 Estimation of the Bit Side Force by Using Artificial Neural Network
Authors: Mohammad Heidari
Abstract:
Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.Keywords: Artificial Neural Network, BHA, Horizontal Well, Stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978236 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even changing the value of data are the severe damages that Structured Query Language injection (SQLi) attack can cause on a given database. It is a code injection technique where malicious SQL statements are inserted into a given SQL database by simply using a web browser. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLi attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLi attack categories, and a NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLi attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: Neural Networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844235 Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies
Authors: Cornelia-Eugenia Munteanu
Abstract:
The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psychodiagnostic solution. The clinicians can draw objective decisions and for the patients: it does not take too much time and energy, it does not bother them and it doesn’t force them to travel frequently.Keywords: MMSE-2, dementia, cognitive impairment, neuropsychology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688234 Real Time Control Learning Game - Speed Race by Learning at the Wheel - Development of Data Acquisition System
Authors: Κonstantinos Kalovrektis, Chryssanthi Palazi
Abstract:
Schools today face ever-increasing demands in their attempts to ensure that students are well equipped to enter the workforce and navigate a complex world. Research indicates that computer technology can help support learning, implementation of various experiments or learning games, and that it is especially useful in developing the higher-order skills of critical thinking, observation, comprehension, implementation, comparison, analysis and active attention to activities such as research, field work, simulations and scientific inquiry. The ICT in education supports the learning procedure by enabling it to be more flexible and effective, create a rich and attractive training environment and equip the students with knowledge and potential useful for the competitive social environment in which they live. This paper presents the design, the development, and the results of the evaluation analysis of an interactive educational game which using real electric vehicles - toys (material) on a toy race track. When the game starts each student selects a specific vehicle toy. Then students are answering questionnaires in the computer. The vehicles' speed is related to the percentage of right answers in a multiple choice questionnaire (software). Every question has its own significant value depending of the different level of questionnaire. Via the developed software, each right or wrong answers in questionnaire increase or decrease the real time speed of their vehicle toys. Moreover the rate of vehicle's speed increase or decrease depends on the difficulty level of each question. The aim of the work is to attract the student’s interest in a learning process and also to improve their scores. The developed real time game was tested using independent populations of students of age groups: 8-10, 11-14, 15-18 years. Standard educational and statistical analysis tools were used for the evaluation analysis of the game. Results reveal that students using the developed real time control game scored much higher (60%) than students using a traditional simulation game on the same questionnaire. Results further indicate that student's interest in repeating the developed real time control gaming was far higher (70%) than the interest of students using a traditional simulation game.
Keywords: Real time game, sensor, learning games, LabVIEW
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731233 Quantifying the Second-Level Digital Divide on Sub-National Level
Authors: Vladimir Korovkin, Albert Park, Evgeny Kaganer
Abstract:
Digital divide, the gap in the access to the world of digital technologies and the socio-economic opportunities that they create is an important phenomenon of the XXI century. This gap may exist between countries, regions within a country or socio-demographic groups, creating the classes of “digital have and have nots”. While the 1st-level divide (the difference in opportunities to access the digital networks) was demonstrated to diminish with time, the issues of 2nd level divide (the difference in skills and usage of digital systems) and 3rd level divide (the difference in effects obtained from digital technology) may grow. The paper offers a systemic review of literature on the measurement of the digital divide, noting the certain conceptual stagnation due to the lack of effective instruments that would capture the complex nature of the phenomenon. As a result, many important concepts do not receive the empiric exploration they deserve. As a solution the paper suggests a composite Digital Life Index, that studies separately the digital supply and demand across seven independent dimensions providing for 14 subindices. The Index is based on Internet-borne data, a distinction from traditional research approaches that rely on official statistics or surveys. The application of the model to the study of the digital divide between Russian regions and between cities in China have brought promising results. The paper advances the existing methodological literature on the 2nd level digital divide and can also inform practical decision-making regarding the strategies of national and regional digital development.
Keywords: Digital transformation, second-level digital divide, composite index, digital policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463232 The Effect of Compost Addition on Chemical and Nitrogen Characteristics, Respiration Activity and Biomass Production in Prepared Reclamation Substrates
Authors: L. Plošek, F. Nsanganwimana, B. Pourrut, J. Elbl, J. Hynšt, A. Kintl, D. Kubná, J. Záhora
Abstract:
Land degradation is of concern in many countries. People more and more must address the problems associated with the degradation of soil properties due to man. Increasingly, organic soil amendments, such as compost are being examined for their potential use in soil restoration and for preventing soil erosion. In the Czech Republic, compost is the most used to improve soil structure and increase the content of soil organic matter. Land reclamation / restoration is one of the ways to evaluate industrially produced compost because Czech farmers are not willing to use compost as organic fertilizer. The most common use of reclamation substrates in the Czech Republic is for the rehabilitation of landfills and contaminated sites.
This paper deals with the influence of reclamation substrates (RS) with different proportions of compost and sand on selected soil properties–chemical characteristics, nitrogen bioavailability, leaching of mineral nitrogen, respiration activity and plant biomass production. Chemical properties vary proportionally with addition of compost and sand to the control variant (topsoil). The highest differences between the variants were recorded in leaching of mineral nitrogen (varies from 1.36mg dm-3 in C to 9.09mg dm-3). Addition of compost to soil improves conditions for plant growth in comparison with soil alone. However, too high addition of compost may have adverse effects on plant growth. In addition, high proportion of compost increases leaching of mineral N. Therefore, mixture of 70% of soil with 10% of compost and 20% of sand may be recommended as optimal composition of RS.
Keywords: Biomass, Compost, Reclamation, Respiration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334231 The Analysis of Internet and Social Media Behaviors of the Students in the Higher School of Vocational and Technical Sciences
Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok
Abstract:
Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer and internet technologies. While these developments occur in the world, Turkey that has a very large young population and whose electronic infrastructure rapidly improves has also been affected by these developments. Nowadays, mobile devices have become common and thus, it causes to increase data traffic in social networks. This study was carried out on students in the different age groups in Selcuk University Vocational School of Technical Sciences, the Department of Computer Technology. Students’ opinions about the use of internet and social media were obtained. The features such as using the Internet and social media skills, purposes, operating frequency, accessing facilities and tools, social life and effects on vocational education and so forth were explored. The positive effects and negative effects of both internet and social media use on the students in this department and findings are evaluated from different perspectives and results are obtained. In addition, relations and differences were found out statistically.
Keywords: Computer technologies, internet use, social network, higher vocational school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758230 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm
Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee
Abstract:
Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.Keywords: Enhanced ideal gas molecular movement, ideal gas molecular movement, model updating method, probability-based damage detection, uncertainty quantification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077229 Managing City Pipe Leaks through Community Participation Using a Web and Mobile Application in South Africa
Authors: Mpai Mokoena, Nsenda Lukumwena
Abstract:
South Africa is one of the driest countries in the world and is facing a water crisis. In addition to inadequate infrastructure and poor planning, the country is experiencing high rates of water wastage due to pipe leaks. This study outlines the level of water wastage and develops a smart solution to efficiently manage and reduce the effects of pipe leaks, while monitoring the situation before and after fixing the pipe leaks. To understand the issue in depth, a literature review of journal papers and government reports was conducted. A questionnaire was designed and distributed to the general public. Additionally, the municipality office was contacted from a managerial perspective. The analysis from the study indicated that the majority of the citizens are aware of the water crisis and are willing to participate positively to decrease the level of water wasted. Furthermore, the response from the municipality acknowledged that more practical solutions are needed to reduce water wastage, and resources to attend to pipe leaks swiftly. Therefore, this paper proposes a specific solution for municipalities, local plumbers and citizens to minimize the effects of pipe leaks. The solution provides web and mobile application platforms to report and manage leaks swiftly. The solution is beneficial to the country in achieving water security and would promote a culture of responsibility toward water usage.
Keywords: Urban Distribution Networks, leak management, mobile application, responsible citizens, water crisis, water security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695228 A BERT-Based Model for Financial Social Media Sentiment Analysis
Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe
Abstract:
The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural Language Processing (NLP) in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.
Keywords: BERT, financial markets, Twitter, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717227 Does Material Choice Drive Sustainability of 3D Printing?
Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye
Abstract:
Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.
Keywords: 3D printing, Additive Manufacturing, Sustainability, Life-cycle assessment, Design for Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3609226 Applying Case-Based Reasoning in Supporting Strategy Decisions
Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami
Abstract:
Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.
Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174225 Blood Lymphocyte and Neutrophil Response of Cultured Rainbow Trout, Oncorhynchus mykiss, Administered Varying Dosages of an Oral Immunomodulator – ‘Fin-Immune™’
Authors: Duane Barker, John Holliday
Abstract:
In a 10-week (May – August, 2008) Phase I trial, 840, 1+ rainbow trout, Oncorhynchus mykiss, received a commercial oral immunomodulator, Fin Immune™, at four different dosages (0, 10, 20 and 30 mg g-1) to evaluate immune response and growth. The overall objective of was to determine an optimal dosage of this product for rainbow trout that provides enhanced immunity with maximal growth and health. Biweekly blood samples were taken from 10 randomly selected fish in each tank (30 samples per treatment) to evaluate the duration of enhanced immunity conferred by Fin-Immune™. The immunological assessment included serum white blood cell (lymphocyte, neutrophil) densities and blood hematocrit (packed cell volume %). Of these three variables, only lymphocyte density increased significantly among trout fed Fin- Immune™ at 20 and 30 mg g-1 which peaked at week 6. At week 7, all trout were switched to regular feed (lacking Fin-Immune™) and by week 10, lymphocyte levels decreased among all levels but were still greater than at week 0. There was growth impairment at the highest dose of Fin-Immune™ tested (30 mg g-1) which can be associated with a physiological compensatory mechanism due to a dose-specific threshold level. Thus, our main objective of this Phase I study was achieved, the 20 mg g-1 dose of Fin-Immune™ should be the most efficacious (of those we tested) to use for a Phase II disease challenge trial.
Keywords: Blood Lymphocyte, Neutrophil Response of Cultured Rainbow Trout, Oncorhynchus mykiss, Oral Immunomodulator – 'Fin-ImmuneTM'.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516224 Privacy Protection Principles of Omnichannel Approach
Authors: Renata Mekovec, Dijana Peras, Ruben Picek
Abstract:
The advent of the Internet, mobile devices and social media is revolutionizing the experience of retail customers by linking multiple sources through various channels. Omnichannel retailing is a retailing that combines multiple channels to allow customers to seamlessly leverage all the distribution information online and offline while shopping. Therefore, today data are an asset more critical than ever for all organizations. Nonetheless, because of its heterogeneity through platforms, developers are currently facing difficulties in dealing with personal data. Considering the possibilities of omnichannel communication, this paper presents channel categorization that could enhance the customer experience of omnichannel center called hyper center. The purpose of this paper is fundamentally to describe the connection between the omnichannel hyper center and the customer, with particular attention to privacy protection. The first phase was finding the most appropriate channels of communication for hyper center. Consequently, a selection of widely used communication channels has been identified and analyzed with regard to the effect requirements for optimizing user experience. The evaluation criteria are divided into 3 groups: general, user profile and channel options. For each criterion the weight of importance for omnichannel communication was defined. The most important thing was to consider how the hyper center can make user identification while respecting the privacy protection requirements. The study carried out also shows what customer experience across digital networks would look like, based on an omnichannel approach owing to privacy protection principles.Keywords: Personal data, privacy protection, omnichannel communication, retail.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640223 Feasibility of Integrating Heating Valve Drivers with KNX-standard for Performing Dynamic Hydraulic Balance in Domestic Buildings
Authors: Tobias Teich, Danny Szendrei, Markus Schrader, Franziska Jahn, Susan Franke
Abstract:
The increasing demand for sufficient and clean energy forces industrial and service companies to align their strategies towards efficient consumption. This trend refers also to the residential building sector. There, large amounts of energy consumption are caused by house and facility heating. Many of the operated hot water heating systems lack hydraulic balanced working conditions for heat distribution and –transmission and lead to inefficient heating. Through hydraulic balancing of heating systems, significant energy savings for primary and secondary energy can be achieved. This paper addresses the use of KNX-technology (Smart Buildings) in residential buildings to ensure a dynamic adaption of hydraulic system's performance, in order to increase the heating system's efficiency. In this paper, the procedure of heating system segmentation into hydraulically independent units (meshes) is presented. Within these meshes, the heating valve are addressed and controlled by a central facility server. Feasibility criteria towards such drivers will be named. The dynamic hydraulic balance is achieved by positioning these valves according to heating loads, that are generated from the temperature settings in the corresponding rooms. The energetic advantages of single room heating control procedures, based on the application FacilityManager, is presented.Keywords: building automation, dynamic hydraulic balance, energy savings, VPN-networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897222 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination
Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini
Abstract:
This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.
Keywords: Impersonation, image registration, incrimination, object detection, threshold evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575221 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831220 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid
Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni
Abstract:
In Zambia, recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines, to upgrade power systems into smart grids, target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, they are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, and therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we present a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.
Keywords: Anomaly detection, SmartGrid, edge, maintainability, reliability, stochastic process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324219 Research Action Fields at the Nexus of Digital Transformation and Supply Chain Management: Findings from Practitioner Focus Group Workshops
Authors: Brandtner Patrick, Staberhofer Franz
Abstract:
Logistics and Supply Chain Management are of crucial importance for organisational success. In the era of Digitalization, several implications and improvement potentials for these domains arise, which at the same time could lead to decreased competitiveness and could endanger long-term company success if ignored or neglected. However, empirical research on the issue of Digitalization and benefits purported to it by practitioners is scarce and mainly focused on single technologies or separate, isolated Supply Chain blocks as e.g. distribution logistics or procurement only. The current paper applies a holistic focus group approach to elaborate practitioner use cases at the nexus of the concepts of Supply Chain Management (SCM) and Digitalization. In the course of three focus group workshops with over 45 participants from more than 20 organisations, a comprehensive set of benefit entitlements and areas for improvement in terms of applying digitalization to SCM is developed. The main results of the paper indicate the relevance of Digitalization being realized in practice. In the form of seventeen concrete research action fields, the benefit entitlements are aggregated and transformed into potential starting points for future research projects in this area. The main contribution of this paper is an empirically grounded basis for future research projects and an overview of actual research action fields from practitioners’ point of view.
Keywords: Digital transformation, supply chain management, digital supply chain, value networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757218 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece
Authors: Panagiotis Karadimos, Leonidas Anthopoulos
Abstract:
Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.
Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235217 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.
As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.
Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916216 Optimization of Some Process Parameters to Produce Raisin Concentrate in Khorasan Region of Iran
Authors: Peiman Ariaii, Hamid Tavakolipour, Mohsen Pirdashti, Rabehe Izadi Amoli
Abstract:
Raisin Concentrate (RC) are the most important products obtained in the raisin processing industries. These RC products are now used to make the syrups, drinks and confectionery productions and introduced as natural substitute for sugar in food applications. Iran is a one of the biggest raisin exporter in the world but unfortunately despite a good raw material, no serious effort to extract the RC has been taken in Iran. Therefore, in this paper, we determined and analyzed affected parameters on extracting RC process and then optimizing these parameters for design the extracting RC process in two types of raisin (round and long) produced in Khorasan region. Two levels of solvent (1:1 and 2:1), three levels of extraction temperature (60°C, 70°C and 80°C), and three levels of concentration temperature (50°C, 60°C and 70°C) were the treatments. Finally physicochemical characteristics of the obtained concentrate such as color, viscosity, percentage of reduction sugar, acidity and the microbial tests (mould and yeast) were counted. The analysis was performed on the basis of factorial in the form of completely randomized design (CRD) and Duncan's multiple range test (DMRT) was used for the comparison of the means. Statistical analysis of results showed that optimal conditions for production of concentrate is round raisins when the solvent ratio was 2:1 with extraction temperature of 60°C and then concentration temperature of 50°C. Round raisin is cheaper than the long one, and it is more economical to concentrate production. Furthermore, round raisin has more aromas and the less color degree with increasing the temperature of concentration and extraction. Finally, according to mentioned factors the concentrate of round raisin is recommended.Keywords: Raisin concentrate, optimization, process parameters, round raisin, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600215 A Metric-Set and Model Suggestion for Better Software Project Cost Estimation
Authors: Murat Ayyıldız, Oya Kalıpsız, Sırma Yavuz
Abstract:
Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with successKeywords: Software Metrics, Software Cost Estimation, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957214 Optimizing the Components of Grid-Independent Microgrids for Rural Electrification Utilizing Solar Panel and Supercapacitor
Authors: Astiaj Khoramshahi, Hossein Ahmadi Danesh Ashtiani, Ahmad Khoshgard, Hamidreza Damghani, Leila Damghani
Abstract:
Rural electrification rates are generally low in Iran and many parts of the world that lack sustainable renewable energy resources. Many homes are based on polluting solutions such as crude oil and diesel generators for lighting, heating, and charging electrical gadgets. Small-scale portable solar battery packs are accessible to the public; however, they have low capacity and are challenging to be distributed in developing countries. To design a battery-based microgrid power systems, the load profile is one of the key parameters. Additionally, the reliability of the system should be taken into account. A conventional microgrid system can be either AC or coupling DC. Both AC and DC microgrids have advantages and disadvantages depending on their application and can be either connected to the main grid or perform independently. This article proposes a tool for optimal sizing of microgrid-independent systems via respective analysis. To show such an analysis, the type of power generation, number of panels, battery capacity, microgrid size, and group of available consumers should be considered. Therefore, the optimization of different design scenarios is based on number of solar panels and super saving sources, ranges of the depth of discharges, to calculate size and estimate the overall cost. Generally, it is observed that there is an inverse relationship between the depth spectrum of discharge and the solar microgrid costs.
Keywords: Storage, super-storage, grid-independent, economic factors, microgrid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317213 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites
Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo
Abstract:
Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.
Keywords: Mixing ratio, nanofiber, polymer, reference photocatalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237212 Total and Partial Factor Productivity Analysis of Irrigated Wheat in Iran by Separate of Exploitation Scales
Authors: Hassan Masoumi, Rashed Alavi
Abstract:
Wheat is one of the strategic crops in Iran, on which the household food basket is highly dependent. Although this crop is cultivated and produced in almost all provinces of the country, its production efficiency is lower than the global and regional averages due to the lack of optimal use of allocated resources. In this research, which was carried out with a documentary and library method, first, the total and partial productivity indices of irrigated wheat production were calculated in large, medium and small exploitation scales in different provinces of the country, and then the provinces were clustered in terms of these indices. The results showed that the total productivity of production factors had a direct correlation with the scale of exploitation, so that with the increase in the size of exploitations, the total productivity index increased. On the scale of small exploitations, North Khorasan, Zanjan, Chaharmahal and Bakhtiari Province, on a medium scale, Chaharmahal and Bakhtiari Province and on the scale of large exploitations, Zanjan, Chaharmahal and Bakhtiari provinces, Kohkiloyeh and Boyer Ahmad and North Khorasan, with better use of production resources compared to other provinces, were placed in the best cluster in terms of total productivity index. The high total productivity index in Zanjan, Chaharmahal and Bakhtiari Province is related to the higher productivity of factors such as mechanization and land in these provinces. Finally, the methods of using these factors in productive provinces, along with technical and specialized regional guidelines, can facilitate the improvement of productivity in less productive provinces.
Keywords: Clustering, Irrigated wheat, Iran, total productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170211 Reliability Assessment for Tie Line Capacity Assistance of Power Systems Based On Multi-Agent System
Authors: Nadheer A. Shalash, Abu Zaharin Bin Ahmad
Abstract:
Technological developments in industrial innovations have currently been related to interconnected system assistance and distribution networks. This important in order to enable an electrical load to continue receive power in the event of disconnection of load from the main power grid. This paper represents a method for reliability assessment of interconnected power systems based. The multi-agent system consists of four agents. The first agent was the generator agent to using as connected the generator to the grid depending on the state of the reserve margin and the load demand. The second was a load agent is that located at the load. Meanwhile, the third is so-called "the reverse margin agent" that to limit the reserve margin between 0 - 25% depend on the load and the unit size generator. In the end, calculation reliability Agent can be calculate expected energy not supplied (EENS), loss of load expectation (LOLE) and the effecting of tie line capacity to determine the risk levels Roy Billinton Test System (RBTS) can use to evaluated the reliability indices by using the developed JADE package. The results estimated of the reliability interconnection power systems presented in this paper. The overall reliability of power system can be improved. Thus, the market becomes more concentrated against demand increasing and the generation units were operating in relation to reliability indices.
Keywords: Reliability indices, Load expectation, Reserve margin, Daily load, Probability, Multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581210 Low Resolution Face Recognition Using Mixture of Experts
Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour
Abstract:
Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724