Search results for: rough sets
338 Facial Recognition on the Basis of Facial Fragments
Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza
Abstract:
There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.
Keywords: Face recognition, Labeled Faces in the Wild (LFW) database, Random Local Descriptor (RLD), random features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013337 Text Summarization for Oil and Gas Drilling Topic
Authors: Y. Y. Chen, O. M. Foong, S. P. Yong, Kurniawan Iwan
Abstract:
Information sharing and gathering are important in the rapid advancement era of technology. The existence of WWW has caused rapid growth of information explosion. Readers are overloaded with too many lengthy text documents in which they are more interested in shorter versions. Oil and gas industry could not escape from this predicament. In this paper, we develop an Automated Text Summarization System known as AutoTextSumm to extract the salient points of oil and gas drilling articles by incorporating statistical approach, keywords identification, synonym words and sentence-s position. In this study, we have conducted interviews with Petroleum Engineering experts and English Language experts to identify the list of most commonly used keywords in the oil and gas drilling domain. The system performance of AutoTextSumm is evaluated using the formulae of precision, recall and F-score. Based on the experimental results, AutoTextSumm has produced satisfactory performance with F-score of 0.81.
Keywords: Keyword's probability, synonym sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731336 Pricing Strategy Selection Using Fuzzy Linear Programming
Authors: Elif Alaybeyoğlu, Y. Esra Albayrak
Abstract:
Marketing establishes a communication network between producers and consumers. Nowadays, marketing approach is customer-focused and products are directly oriented to meet customer needs. Marketing, which is a long process, needs organization and management. Therefore strategic marketing planning becomes more and more important in today’s competitive conditions. Main focus of this paper is to evaluate pricing strategies and select the best pricing strategy solution while considering internal and external factors influencing the company’s pricing decisions associated with new product development. To reflect the decision maker’s subjective preference information and to determine the weight vector of factors (attributes), the fuzzy linear programming technique for multidimensional analysis of preference (LINMAP) under intuitionistic fuzzy (IF) environments is used.
Keywords: IF Sets, LINMAP, MAGDM, Marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264335 Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences
Authors: Chien-Hua Wang, Chin-Tzong Pang
Abstract:
In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.Keywords: Association Rule, Fuzzy Partition Methods, FWFP-Growth, Apiroir algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652334 A Discrete Filtering Algorithm for Impulse Wave Parameter Estimation
Authors: Khaled M. EL-Naggar
Abstract:
This paper presents a new method for estimating the mean curve of impulse voltage waveforms that are recorded during impulse tests. In practice, these waveforms are distorted by noise, oscillations and overshoot. The problem is formulated as an estimation problem. Estimation of the current signal parameters is achieved using a fast and accurate technique. The method is based on discrete dynamic filtering algorithm (DDF). The main advantage of the proposed technique is its ability in producing the estimates in a very short time and at a very high degree of accuracy. The algorithm uses sets of digital samples of the recorded impulse waveform. The proposed technique has been tested using simulated data of practical waveforms. Effects of number of samples and data window size are studied. Results are reported and discussed.
Keywords: Digital Filtering, Estimation, Impulse wave, Stochastic filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849333 Estimation of Load Impedance in Presence of Harmonics
Authors: Khaled M. EL-Naggar
Abstract:
This paper presents a fast and efficient on-line technique for estimating impedance of unbalanced loads in power systems. The proposed technique is an application of a discrete timedynamic filter based on stochastic estimation theory which is suitable for estimating parameters in noisy environment. The algorithm uses sets of digital samples of the distorted voltage and current waveforms of the non-linear load to estimate the harmonic contents of these two signal. The non-linear load impedance is then calculated from these contents. The method is tested using practical data. Results are reported and compared with those obtained using the conventional least error squares technique. In addition to the very accurate results obtained, the method can detect and reject bad measurements. This can be considered as a very important advantage over the conventional static estimation methods such as the least error square method.
Keywords: Estimation, identification, Harmonics, Dynamic Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063332 Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising
Authors: Mario Mastriani
Abstract:
We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on the following procedure: We apply 1) Bidimentional Discrete Wavelet Transform (DWT-2D) to the Noisy Microarray, 2) scaling and rounding to the coefficients of the highest subbands (to obtain integer and positive coefficients), 3) bit-slicing to the new highest subbands (to obtain bit-planes), 4) then we apply the Systholic Boolean Orthonormalizer Network (SBON) to the input bit-plane set and we obtain two orthonormal otput bit-plane sets (in a Boolean sense), we project a set on the other one, by means of an AND operation, and then, 5) we apply re-assembling, and, 6) rescaling. Finally, 7) we apply Inverse DWT-2D and reconstruct a microarray from the modified wavelet coefficients. Denoising results compare favorably to the most of methods in use at the moment.
Keywords: Bit-Plane, Boolean Orthonormalization Process, Denoising, Microarrays, Wavelets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490331 Advanced Information Extraction with n-gram based LSI
Authors: Ahmet Güven, Ö. Özgür Bozkurt, Oya Kalıpsız
Abstract:
Number of documents being created increases at an increasing pace while most of them being in already known topics and little of them introducing new concepts. This fact has started a new era in information retrieval discipline where the requirements have their own specialties. That is digging into topics and concepts and finding out subtopics or relations between topics. Up to now IR researches were interested in retrieving documents about a general topic or clustering documents under generic subjects. However these conventional approaches can-t go deep into content of documents which makes it difficult for people to reach to right documents they were searching. So we need new ways of mining document sets where the critic point is to know much about the contents of the documents. As a solution we are proposing to enhance LSI, one of the proven IR techniques by supporting its vector space with n-gram forms of words. Positive results we have obtained are shown in two different application area of IR domain; querying a document database, clustering documents in the document database.Keywords: Document clustering, Information Extraction, Information Retrieval, LSI, n-gram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803330 Proposed Alternative System to Existing Traffic Signal System
Authors: Alluri Swaroopa, Lakkakula Venkata Narasimha Prasad
Abstract:
Alone with fast urbanization in world, traffic control became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.
Keywords: Bridges, junctions, ramps, urban traffic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182329 Students’ Perception of Using Dental e-Models in an Inquiry-Based Curriculum
Authors: Yanqi Yang, Chongshan Liao, Cheuk Hin Ho, Susan Bridges
Abstract:
Aim: To investigate students’ perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding students’ perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, students' preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline.
Keywords: E-models, inquiry-based curriculum, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818328 Objective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images
Authors: Emhimed Saffor, Abdelkader Salama
Abstract:
In this paper problem of edge detection in digital images is considered. Edge detection based on morphological operators was applied on two sets (brain & chest) ct images. Three methods of edge detection by applying line morphological filters with multi structures in different directions have been used. 3x3 filter for first method, 5x5 filter for second method, and 7x7 filter for third method. We had applied this algorithm on (13 images) under MATLAB program environment. In order to evaluate the performance of the above mentioned edge detection algorithms, standard deviation (SD) and peak signal to noise ratio (PSNR) were used for justification for all different ct images. The objective method and the comparison of different methods of edge detection, shows that high values of both standard deviation and PSNR values of edge detection images were obtained.
Keywords: Medical images, Matlab, Edge detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638327 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577326 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Authors: Alexandros Leontitsis, Archana P. Sangole
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.Keywords: Parameter estimation, self-organizing feature maps, spherical topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519325 Persian Printed Numerals Classification Using Extended Moment Invariants
Authors: Hamid Reza Boveiri
Abstract:
Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.Keywords: Extended moment invariants, optical characterrecognition, Persian numerals classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919324 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.
Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036323 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung
Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner
Abstract:
Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.
Keywords: lung cancer, micro arrays, data mining, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754322 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648321 Order Partitioning in Hybrid MTS/MTO Contexts using Fuzzy ANP
Authors: H. Rafiei, M. Rabbani
Abstract:
A novel concept to balance and tradeoff between make-to-stock and make-to-order has been hybrid MTS/MTO production context. One of the most important decisions involved in the hybrid MTS/MTO environment is determining whether a product is manufactured to stock, to order, or hybrid MTS/MTO strategy. In this paper, a model based on analytic network process is developed to tackle the addressed decision. Since the regarded decision deals with the uncertainty and ambiguity of data as well as experts- and managers- linguistic judgments, the proposed model is equipped with fuzzy sets theory. An important attribute of the model is its generality due to diverse decision factors which are elicited from the literature and developed by the authors. Finally, the model is validated by applying to a real case study to reveal how the proposed model can actually be implemented.Keywords: Fuzzy analytic network process, Hybrid make-tostock/ make-to-order, Order partitioning, Production planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176320 Knowledge Management Criteria among Malaysian Organizations: An ANOVA Approach
Authors: Reza Sigari Tabrizi, Yeap Peik Foong, Nazli Ebrahimi
Abstract:
The Knowledge Management (KM) Criteria is an essential foundation to evaluate KM outcomes. Different sets of criteria were developed and tailored by many researchers to determine the results of KM initiatives. However, literature review has emphasized on incomplete set of criteria for evaluating KM outcomes. Hence, this paper tried to address the problem of determining the criteria for measuring knowledge management outcomes among different types of Malaysian organizations. Successively, this paper was assumed to develop widely accepted criteria to measure success of knowledge management efforts for Malaysian organizations. Our analysis approach was based on the ANOVA procedure to compare a set of criteria among different types of organizations. This set of criteria was exploited from literature review. It is hoped that this study provides a better picture for different types of Malaysian organizations to establish a comprehensive set of criteria due to measure results of KM programs.Keywords: KM Criteria, Knowledge Management, KMOutcomes, ANOVA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599319 Identification of Nonlinear Systems Using Radial Basis Function Neural Network
Authors: C. Pislaru, A. Shebani
Abstract:
This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.
Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864318 End To End Process to Automate Batch Application
Authors: Nagmani Lnu
Abstract:
Often, quality engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a batch application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a batch application from a financial industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in test creation and test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process.
Keywords: Batch testing, batch test automation, batch test strategy, payments testing, payments settlement testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67317 The CEO Mission II, Rescue Robot with Multi-Joint Mechanical Arm
Authors: Amon Tunwannarux, Supanunt Tunwannarux
Abstract:
This paper presents design features of a rescue robot, named CEO Mission II. Its body is designed to be the track wheel type with double front flippers for climbing over the collapse and the rough terrain. With 125 cm. long, 5-joint mechanical arm installed on the robot body, it is deployed not only for surveillance from the top view but also easier and faster access to the victims to get their vital signs. Two cameras and sensors for searching vital signs are set up at the tip of the multi-joint mechanical arm. The third camera is at the back of the robot for driving control. Hardware and software of the system, which controls and monitors the rescue robot, are explained. The control system is used for controlling the robot locomotion, the 5-joint mechanical arm, and for turning on/off devices. The monitoring system gathers all information from 7 distance sensors, IR temperature sensors, 3 CCD cameras, voice sensor, robot wheels encoders, yawn/pitch/roll angle sensors, laser range finder and 8 spare A/D inputs. All sensors and controlling data are communicated with a remote control station via IEEE 802.11b Wi-Fi. The audio and video data are compressed and sent via another IEEE 802.11g Wi-Fi transmitter for getting real-time response. At remote control station site, the robot locomotion and the mechanical arm are controlled by joystick. Moreover, the user-friendly GUI control program is developed based on the clicking and dragging method to easily control the movement of the arm. Robot traveling map is plotted from computing the information of wheel encoders and the yawn/pitch data. 2D Obstacle map is plotted from data of the laser range finder. The concept and design of this robot can be adapted to suit many other applications. As the Best Technique awardee from Thailand Rescue Robot Championship 2006, all testing results are satisfied.Keywords: Controlling, monitoring, rescue robot, mechanicalarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973316 The Application of an Ensemble of Boosted Elman Networks to Time Series Prediction: A Benchmark Study
Authors: Chee Peng Lim, Wei Yee Goh
Abstract:
In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.
Keywords: AdaBoost, Elman network, neural network ensemble, time series regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691315 Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification
Authors: María-Dolores Cubiles-de-la-Vega, Rafael Pino-Mejías, Esther-Lydia Silva-Ramírez
Abstract:
A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.Keywords: Cluster Analysis, Empiric Characteristic Function, Multi-class SVM, R.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878314 Matching on Bipartite Graphs with Applications to School Course Registration Systems
Authors: Zhihan Li
Abstract:
Nowadays, most universities use the course enrollment system considering students’ registration orders. However, the students’ preference level to certain courses is also one important factor to consider. In this research, the possibility of applying a preference-first system has been discussed and analyzed compared to the order-first system. A bipartite graph is applied to resemble the relationship between students and courses they tend to register. With the graph set up, we apply Ford-Fulkerson (F.F.) Algorithm to maximize parings between two sets of nodes, in our case, students and courses. Two models are proposed in this paper: the one considered students’ order first, and the one considered students’ preference first. By comparing and contrasting the two models, we highlight the usability of models which potentially leads to better designs for school course registration systems.
Keywords: Bipartite graph, Ford-Fulkerson Algorithm, graph theory, maximum matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804313 The Effects of Wind Forcing on Surface Currents on the Continental Shelf Surrounding Rottnest Island
Authors: Jennifer Penton, Charitha Pattiaratchi
Abstract:
Surface currents play a major role in the distribution of contaminants, the connectivity of marine populations, and can influence the vertical and horizontal distribution of nutrients within the water column. This paper aims to determine the effects of sea breeze-wind patterns on the climatology of the surface currents on the continental shelf surrounding Rottnest Island, WA Australia. The alternating wind patterns allow for full cyclic rotations of wind direction, permitting the interpretation of the effect of the wind on the surface currents. It was found that the surface currents only clearly follow the northbound Capes Current in times when the Fremantle Doctor sets in. Surface currents react within an hour to a change of direction of the wind, allowing southerly currents to dominate during strong northerly sea breezes, often followed by mixed currents dominated by eddies in the inter-lying times.Keywords: HF radar, surface currents, sea breeze.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541312 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912311 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices
Authors: František Včelař, Zuzana Pátíková
Abstract:
Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.Keywords: Fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110310 Multiwavelet and Biological Signal Processing
Authors: Morteza Moazami-Goudarzi, Ali Taheri, Mohammad Pooyan, Reza Mahboobi
Abstract:
In this paper we are to find the optimum multiwavelet for compression of electrocardiogram (ECG) signals and then, selecting it for using with SPIHT codec. At present, it is not well known which multiwavelet is the best choice for optimum compression of ECG. In this work, we examine different multiwavelets on 24 sets of ECG data with entirely different characteristics, selected from MIT-BIH database. For assessing the functionality of the different multiwavelets in compressing ECG signals, in addition to known factors such as Compression Ratio (CR), Percent Root Difference (PRD), Distortion (D), Root Mean Square Error (RMSE) in compression literature, we also employed the Cross Correlation (CC) criterion for studying the morphological relations between the reconstructed and the original ECG signal and Signal to reconstruction Noise Ratio (SNR). The simulation results show that the Cardinal Balanced Multiwavelet (cardbal2) by the means of identity (Id) prefiltering method to be the best effective transformation. After finding the most efficient multiwavelet, we apply SPIHT coding algorithm on the transformed signal by this multiwavelet.
Keywords: ECG compression, Prefiltering, Cardinal Balanced Multiwavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851309 Motion Recognition Based On Fuzzy WP Feature Extraction Approach
Authors: Keun-Chang Kwak
Abstract:
This paper is concerned with motion recognition based fuzzy WP(Wavelet Packet) feature extraction approach from Vicon physical data sets. For this purpose, we use an efficient fuzzy mutual-information-based WP transform for feature extraction. This method estimates the required mutual information using a novel approach based on fuzzy membership function. The physical action data set includes 10 normal and 10 aggressive physical actions that measure the human activity. The data have been collected from 10 subjects using the Vicon 3D tracker. The experiments consist of running, seating, and walking as physical activity motion among various activities. The experimental results revealed that the presented feature extraction approach showed good recognition performance.
Keywords: Motion recognition, fuzzy wavelet packet, Vicon physical data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644