Search results for: noise web data learning
9024 Adaptive Weighted Averaging Filter Using the Appropriate Number of Consecutive Frames
Authors: Mahmoud Saeidi, Ali Nazemipour
Abstract:
In this paper, we propose a novel adaptive spatiotemporal filter that utilizes image sequences in order to remove noise. The consecutive frames include: current, previous and next noisy frames. The filter proposed in this paper is based upon the weighted averaging pixels intensity and noise variance in image sequences. It utilizes the Appropriate Number of Consecutive Frames (ANCF) based on the noisy pixels intensity among the frames. The number of consecutive frames is adaptively calculated for each region in image and its value may change from one region to another region depending on the pixels intensity within the region. The weights are determined by a well-defined mathematical criterion, which is adaptive to the feature of spatiotemporal pixels of the consecutive frames. It is experimentally shown that the proposed filter can preserve image structures and edges under motion while suppressing noise, and thus can be effectively used in image sequences filtering. In addition, the AWA filter using ANCF is particularly well suited for filtering sequences that contain segments with abruptly changing scene content due to, for example, rapid zooming and changes in the view of the camera.Keywords: Appropriate Number of Consecutive Frames, Adaptive Weighted Averaging, Motion Estimation, Noise Variance, Motion Compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18199023 Using Facebook as an Alternative Learning Tool in Malaysian Higher Learning Institutions: A Structural Equation Modeling Approach
Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmad
Abstract:
Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modeling was employed for data analysis and hypothesis testing. This study finding has provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.Keywords: Learning Management Tool, Social Networking, Education, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24259022 Improving the Quality of e-learning Courses in Higher Education through Student Satisfaction
Authors: Susana Lemos, Neuza Pedro
Abstract:
Thepurpose of the research is to characterize the levels of satisfaction of the students in e-learning post-graduate courses, taking into account specific dimensions of the course which were considered as benchmarks for the quality of this type of online learning initiative, as well as the levels of satisfaction towards each specific indicator identified in each dimension. It was also an aim of this study to understand how thesedimensions relate to one another. Using a quantitative research approach in the collection and analysis of the data, the study involves the participation of the students who attended on e-learning course in 2010/2011. The conclusions of this study suggest that online students present relatively high levels of satisfaction, which points towards a positive experience during the course. It is possible to note that there is a correlation between the different dimensions studied, consequently leading to different improvement strategies. Ultimately, this investigation aims to contribute to the promotion of quality and the success of e-learning initiatives in Higher Education.Keywords: e-learning, higher education, quality, students satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15979021 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24809020 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences
Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam
Abstract:
The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.Keywords: Learning experiences, innovation, traditional games, trainee teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24439019 Visual Analytics in K 12 Education - Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors within Actor-network theory (ANT). The learning conditions are found to be distinguished by broad complexity, characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.
Keywords: Analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16979018 Robust Parameter and Scale Factor Estimation in Nonstationary and Impulsive Noise Environment
Authors: Zoran D. Banjac, Branko D. Kovacevic
Abstract:
The problem of FIR system parameter estimation has been considered in the paper. A new robust recursive algorithm for simultaneously estimation of parameters and scale factor of prediction residuals in non-stationary environment corrupted by impulsive noise has been proposed. The performance of derived algorithm has been tested by simulations.
Keywords: Adaptive filtering, Non-Gaussian filtering, Robustestimation, Scale factor estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17079017 Open Educational Resource in Online Mathematics Learning
Authors: Haohao Wang
Abstract:
Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.Keywords: Online learning, Open Educational Resources, Multimedia, Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21149016 Effect of Initial Conditions on Aerodynamic and Acoustic Characteristics of High Subsonic Jets from Sharp Edged Circular Orifice
Authors: Murugan, K. N. Sharma, S. D.
Abstract:
The present work involves measurements to examine the effects of initial conditions on aerodynamic and acoustic characteristics of a Jet at M=0.8 by changing the orientation of sharp edged orifice plate. A thick plate with chamfered orifice presented divergent and convergent openings when it was flipped over. The centerline velocity was found to decay more rapidly for divergent orifice and that was consistent with the enhanced mass entrainment suggesting quicker spread of the jet compared with that from the convergent orifice. The mixing layer region elucidated this effect of initial conditions at an early stage – the growth was found to be comparatively more pronounced for the divergent orifice resulting in reduced potential core size. The acoustic measurements, carried out in the near field noise region outside the jet within potential core length, showed the jet from the divergent orifice to be less noisy. The frequency spectra of the noise signal exhibited that in the initial region of comparatively thin mixing layer for the convergent orifice, the peak registered a higher SPL and a higher frequency as well. The noise spectra and the mixing layer development suggested a direct correlation between the coherent structures developing in the initial region of the jet and the noise captured in the surrounding near field.Keywords: Convergent orifice jet, Divergent orifice jet, Mass entrainment, mixing layer, near field noise, frequency spectrum, SPL, Strouhal number, wave number, reactive pressure field, propagating pressure field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15599015 ‘Daily Speaking’: Designing an App for Construction of Language Learning Model Supporting ‘Seamless Flipped’ Environment
Authors: Zhou Hong, Gu Xiao-Qing, Lıu Hong-Jiao, Leng Jing
Abstract:
Seamless learning is becoming a research hotspot in recent years, and the emerging of micro-lectures, flipped classroom has strengthened the development of seamless learning. Based on the characteristics of the seamless learning across time and space and the course structure of the flipped classroom, and the theories of language learning, we put forward the language learning model which can support ‘seamless flipped’ environment (abbreviated as ‘S-F’). Meanwhile, the characteristics of the ‘S-F’ learning environment, the corresponding framework construction and the activity design of diversified corpora were introduced. Moreover, a language learning app named ‘Daily Speaking’ was developed to facilitate the practice of the language learning model in ‘S-F’ environment. In virtue of the learning case of Shanghai language, the rationality and feasibility of this framework were examined, expecting to provide a reference for the design of ‘S-F’ learning in different situations.
Keywords: Seamless learning, flipped classroom, seamless-flipped environment, language learning model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6269014 A Learning-Community Recommendation Approach for Web-Based Cooperative Learning
Authors: Jian-Wei Li, Yao-Tien Wang, Yi-Chun Chang
Abstract:
Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.
Keywords: k-nearest neighbor classification, learning community, Cooperative/Collaborative Learning and Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19059013 Factors Affecting Happiness Learning of Students of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Somtop Keawchuer
Abstract:
The objectives of this research are to compare the satisfaction of students, towards the happiness learning, sorted by their personal profiles, and to figure out the factors that affect the students’ happiness learning. This paper used survey method to collect data from 362 students. The survey was mainly conducted in the Faculty of Management Science, Suan Sunandha Rajabhat University, including 3,443 students. The statistics used for interpreting the results included the frequencies, percentages, standard deviations and One-way ANOVA. The findings revealed that the students are aware and satisfaction that all the factors in 3 categories (knowledge, skill and attitude) influence the happiness learning at the highest levels. The comparison of the satisfaction levels of the students toward their happiness learning leads to the results that the students with different genders, ages, years of study, and majors of the study have the similar satisfaction at the high level.
Keywords: Happiness Learning, Satisfaction, Students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39419012 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies
Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan
Abstract:
The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15719011 Evaluation of Sensor Pattern Noise Estimators for Source Camera Identification
Authors: Benjamin Anderson-Sackaney, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent source camera identification (SCI) systems. Then, the performance of various sensor pattern noise (SPN) estimators was experimentally assessed, under common photo response non-uniformity (PRNU) frameworks. The experiments used 1350 natural and 900 flat-field images, captured by 18 individual cameras. 12 different experiments, grouped into three sets, were conducted. The results were analyzed using the receiver operator characteristic (ROC) curves. The experimental results demonstrated that combining the basic SPN estimator with a wavelet-based filtering scheme provides promising results. However, the phase SPN estimator fits better with both patch-based (BM3D) and anisotropic diffusion (AD) filtering schemes.Keywords: Sensor pattern noise, source camera identification, photo response non-uniformity, anisotropic diffusion, peak to correlation energy ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11369010 Peakwise Smoothing of Data Models using Wavelets
Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan
Abstract:
Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17509009 Empirical Mode Decomposition Based Denoising by Customized Thresholding
Authors: Wahiba Mohguen, Raïs El’hadi Bekka
Abstract:
This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).
Keywords: Customized thresholding, ECG signal, EMD, hard thresholding, Soft-thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10859008 Differences in Students` Satisfaction with Distance Learning Studies
Authors: Ana Horvat, Maja Krsmanovic, Mladen Djuric
Abstract:
Rapid growth of distance learning resulted in importance to conduct research on students- satisfaction with distance learning because differences in students- satisfaction might influence educational opportunities for learning in a relevant Web-based environment. In line with this, this paper deals with satisfaction of students with distance module at Faculty of organizational sciences (FOS) in Serbia as well as some factors affecting differences in their satisfaction . We have conducted a research on a population of 68 first-year students of distance learning studies at FOS. Using statistical techniques, we have found out that there is no significant difference in students- satisfaction with distance learning module between men and women. In the same way, we also concluded that there is a difference in satisfaction with distance learning module regarding to student-s perception of opportunity to gain knowledge as the classic students.Keywords: distance learning, students' satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25999007 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: T. Aydin, M. F. Alaeddinoglu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatiotemporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newlyformed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: Apriori algorithm, association rules, data mining, spatio-temporal data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14059006 On a Theoretical Framework for Language Learning Apps Evaluation
Authors: Juan Manuel Real-Espinosa
Abstract:
This paper addresses the first step to evaluate language learning apps: what theoretical framework to adopt when designing the app evaluation framework. The answer is not just one, since there are several options that could be proposed. However, the question to be clarified is to what extent the learning design of apps is based on a specific learning approach, or on the contrary, on a fusion of elements from several theoretical proposals and paradigms, such as m-learning, Mobile Assisted Language Learning and a number of theories about language acquisition. The present study suggests that the reality is closer to the second assumption. This implies that the theoretical framework against which the learning design of the apps should be evaluated, must also be a hybrid theoretical framework, which integrates evaluation criteria from the different theories involved in language learning through mobile applications.
Keywords: Action-oriented approach, apps evaluation, mobile-assisted language learning, post-method pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5859005 Clustering Categorical Data Using Hierarchies (CLUCDUH)
Authors: Gökhan Silahtaroğlu
Abstract:
Clustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n).Keywords: Clustering, tree, split, pruning, entropy, gini.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15569004 King Bhumibol Adulyadej’s “Learn Wisely” Concept: An Application to Instructional Design
Authors: Rossukhon Makaramani, Supanan Sittilerd
Abstract:
This study is about an application of King Bhumibol Adulyadej’s “Learn Wisely” (LW) concept in instructional design and management process at the Faculty of Education, Suan Sunahdha Rajabhat University. The concept suggests four strategies for true learning. Related literature and significant LW methods in teaching and learning are also reviewed and then applied in designing a pedagogy learning module. The design has been implemented in three classrooms with a total of 115 sophomore student teachers. After one consecutive semester of managing and adjusting the process by instructors and experts using collected data from minutes, assessment of learning management, satisfaction and learning achievement of the students, it is found that the effective SSRU model of LW instructional method comprises of five steps.
Keywords: Instructional Design, Learn Wisely Strategy, Pedagogy Learning Module, Teaching Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25379003 Robust Coherent Noise Suppression by Point Estimation of the Cauchy Location Parameter
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
This paper introduces a new point estimation algorithm, with particular focus on coherent noise suppression, given several measurements of the device under test where it is assumed that 1) the noise is first-order stationery and 2) the device under test is linear and time-invariant. The algorithm exploits the robustness of the Pitman estimator of the Cauchy location parameter through the initial scaling of the test signal by a centred Gaussian variable of predetermined variance. It is illustrated through mathematical derivations and simulation results that the proposed algorithm is more accurate and consistently robust to outliers for different tailed density functions than the conventional methods of sample mean (coherent averaging technique) and sample median search.
Keywords: Central limit theorem, Fisher-Cramer Rao, gamma function, Pitman estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19229002 Building an e-Learning System Model with Implications for Research and Instructional Use
Authors: Kuan-Chou Chen, Keh-Wen “Carin” Chuang
Abstract:
This paper demonstrates a model of an e-Learning system based on nowadays learning theory and distant education practice. The relationships in the model are designed to be simple and functional and do not necessarily represent any particular e- Learning environments. It is meant to be a generic e-Learning system model with implications for any distant education course instructional design. It allows online instructors to move away from the discrepancy between the courses and body of knowledge. The interrelationships of four primary sectors that are at the e-Learning system are presented in this paper. This integrated model includes [1] pedagogy, [2] technology, [3] teaching, and [4] learning. There are interactions within each of these sectors depicted by system loop map.Keywords: e-Learning system, online courses instructionaldesign, integrated model, interrelationships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15179001 Improved Approximation to the Derivative of a Digital Signal Using Wavelet Transforms for Crosstalk Analysis
Authors: S. P. Kozaitis, R. L. Kriner
Abstract:
The information revealed by derivatives can help to better characterize digital near-end crosstalk signatures with the ultimate goal of identifying the specific aggressor signal. Unfortunately, derivatives tend to be very sensitive to even low levels of noise. In this work we approximated the derivatives of both quiet and noisy digital signals using a wavelet-based technique. The results are presented for Gaussian digital edges, IBIS Model digital edges, and digital edges in oscilloscope data captured from an actual printed circuit board. Tradeoffs between accuracy and noise immunity are presented. The results show that the wavelet technique can produce first derivative approximations that are accurate to within 5% or better, even under noisy conditions. The wavelet technique can be used to calculate the derivative of a digital signal edge when conventional methods fail.Keywords: digital signals, electronics, IBIS model, printedcircuit board, wavelets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18779000 The Implementation of Self-Determination Theory on the Opportunities and Challenges for Blended e-Learning in Motivating Egyptian Logistic Learners
Authors: Aisha Tarek Noour, Nick Hubbard
Abstract:
Learner motivation is considered to be an important component for the Blended e-Learning (BL) Method. BL is an effective learning method in multiple domains, which opens several opportunities for its participants to engage in the learning environment. This research explores the learners’ perspective of BL according to the Self-Determination Theory (SDT). It identifies the opportunities and challenges for using the BL in Logistics Education (LE) in Egyptian Higher Education (HE). SDT is approached from different perspectives within the relationship between Intrinsic Motivation (IM), Extrinsic Motivation (EM) and Amotivation (AM). A self-administered face-to-face questionnaire was used to collect data from learners who were geographically widely spread around three colleges of International Transport and Logistics (CILTs) at the Arab Academy for Science, Technology and Maritime Transport (AAST&MT) in Egypt. Six hundred and sixteen undergraduates responded to a questionnaire survey. Respondents were drawn from three branches in Greater Cairo, Alexandria, and Port Said. The data analysis used was SPSS 22 and AMOS 18.
Keywords: Intrinsic Motivation, Extrinsic Motivation, Amotivation, Blended e-Learning, Self Determination Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23758999 Smartphone Video Source Identification Based on Sensor Pattern Noise
Authors: Raquel Ramos López, Anissa El-Khattabi, Ana Lucila Sandoval Orozco, Luis Javier García Villalba
Abstract:
An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results.Keywords: Digital video, forensics analysis, key frame, mobile device, PRNU, sensor noise, source identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11988998 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20838997 A Study on Evaluation of Strut Type Suspension Noise Caused by Rubber Degradation
Authors: Gugyong Kim, Sugnsu Kang, Yongjun Lee, Sooncheol Park, Wonwook Jung
Abstract:
When cars are released from the factory, strut noises are very small and therefore it is difficult to perceive them. As the use time and travel distance increase, however, strut noises get larger so as to cause users much uneasiness. The noises generated at the field include engine noises and flow noises and therefore it is difficult to clearly discern the noises generated from struts. This study developed a test method which can reproduce field strut noises in the lab. Using the newly developed noise evaluation test, this study analyzed the effects that insulator performance degradation and failure can have on car noises. The study also confirmed that the insulator durability test by the simple back-and-forth motion cannot completely reflect the state of the parts failure in the field. Based on this, the study also confirmed that field noises can be reproduced through a durability test that considers heat aging.
Keywords: Insulator, noise, performance degradation, strut
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17218996 E-Learning Methodology Development using Modeling
Authors: Sarma Cakula, Maija Sedleniece
Abstract:
Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.Keywords: E-learning, modeling, E-learning methods development, personal knowledge management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19908995 Unveiling the Mathematical Essence of Machine Learning: A Comprehensive Exploration
Authors: Randhir Singh Baghel
Abstract:
In this study, the fundamental ideas guiding the dynamic area of machine learning—where models thrive and algorithms change over time—are rooted in an innate mathematical link. This study explores the fundamental ideas that drive the development of intelligent systems, providing light on the mutually beneficial link between mathematics and machine learning.
Keywords: Machine Learning, deep learning, Neural Network, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165