Search results for: Real time collision avoidance.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7693

Search results for: Real time collision avoidance.

7333 Intelligent Agent Approach to the Control of Critical Infrastructure Networks

Authors: James D. Gadze, Niki Pissinou, Kia Makki

Abstract:

In this paper we propose an intelligent agent approach to control the electric power grid at a smaller granularity in order to give it self-healing capabilities. We develop a method using the influence model to transform transmission substations into information processing, analyzing and decision making (intelligent behavior) units. We also develop a wireless communication method to deliver real-time uncorrupted information to an intelligent controller in a power system environment. A combined networking and information theoretic approach is adopted in meeting both the delay and error probability requirements. We use a mobile agent approach in optimizing the achievable information rate vector and in the distribution of rates to users (sensors). We developed the concept and the quantitative tools require in the creation of cooperating semiautonomous subsystems which puts the electric grid on the path towards intelligent and self-healing system.

Keywords: Mobile agent, power system operation and control, real time, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
7332 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: Emergence procedure, expert system, operator support, PWR nuclear power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
7331 Distance Transmission Line Protection Based on Radial Basis Function Neural Network

Authors: Anant Oonsivilai, Sanom Saichoomdee

Abstract:

To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.

Keywords: radial basis function neural network, transmission lines protection, relaying, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
7330 Development of an Avionics System for Flight Data Collection of an UAV Helicopter

Authors: Nikhil Ramaswamy, S.N.Omkar, Kashyap.H.Nathwani, Anil.M.Vanjare

Abstract:

In this present work, the development of an avionics system for flight data collection of a Raptor 30 V2 is carried out. For the data acquisition both onground and onboard avionics systems are developed for testing of a small-scale Unmanned Aerial Vehicle (UAV) helicopter. The onboard avionics record the helicopter state outputs namely accelerations, angular rates and Euler angles, in real time, and the on ground avionics system record the inputs given to the radio controlled helicopter through a transmitter, in real time. The avionic systems are designed and developed taking into consideration low weight, small size, anti-vibration, low power consumption, and easy interfacing. To mitigate the medium frequency vibrations embedded on the UAV helicopter during flight, a damper is designed and its performance is evaluated. A number of flight tests are carried out and the data obtained is then analyzed for accuracy and repeatability and conclusions are inferred.

Keywords: Data collection, Flight Testing, Onground and Onboard Avionics, UAV helicopter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
7329 A Novel Approach of Route Choice in Stochastic Time-varying Networks

Authors: Siliang Wang, Minghui Wang

Abstract:

Many exist studies always use Markov decision processes (MDPs) in modeling optimal route choice in stochastic, time-varying networks. However, taking many variable traffic data and transforming them into optimal route decision is a computational challenge by employing MDPs in real transportation networks. In this paper we model finite horizon MDPs using directed hypergraphs. It is shown that the problem of route choice in stochastic, time-varying networks can be formulated as a minimum cost hyperpath problem, and it also can be solved in linear time. We finally demonstrate the significant computational advantages of the introduced methods.

Keywords: Markov decision processes (MDPs), stochastictime-varying networks, hypergraphs, route choice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
7328 High Accuracy ESPRIT-TLS Technique for Wind Turbine Fault Discrimination

Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui

Abstract:

ESPRIT-TLS method appears a good choice for high resolution fault detection in induction machines. It has a very high effectiveness in the frequency and amplitude identification. Contrariwise, it presents a high computation complexity which affects its implementation in real time fault diagnosis. To avoid this problem, a Fast-ESPRIT algorithm that combined the IIR band-pass filtering technique, the decimation technique and the original ESPRIT-TLS method was employed to enhance extracting accurately frequencies and their magnitudes from the wind stator current with less computation cost. The proposed algorithm has been applied to verify the wind turbine machine need in the implementation of an online, fast, and proactive condition monitoring. This type of remote and periodic maintenance provides an acceptable machine lifetime, minimize its downtimes and maximize its productivity. The developed technique has evaluated by computer simulations under many fault scenarios. Study results prove the performance of Fast- ESPRIT offering rapid and high resolution harmonics recognizing with minimum computation time and less memory cost.

Keywords: Spectral Estimation, ESPRIT-TLS, Real Time, Diagnosis, Wind Turbine Faults, Band-Pass Filtering, Decimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
7327 Computationally Efficient Adaptive Rate Sampling and Adaptive Resolution Analysis

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

Mostly the real life signals are time varying in nature. For proper characterization of such signals, time-frequency representation is required. The STFT (short-time Fourier transform) is a classical tool used for this purpose. The limitation of the STFT is its fixed time-frequency resolution. Thus, an enhanced version of the STFT, which is based on the cross-level sampling, is devised. It can adapt the sampling frequency and the window function length by following the input signal local variations. Therefore, it provides an adaptive resolution time-frequency representation of the input. The computational complexity of the proposed STFT is deduced and compared to the classical one. The results show a significant gain of the computational efficiency and hence of the processing power. The processing error of the proposed technique is also discussed.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
7326 Benchmarking of Pentesting Tools

Authors: Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

The benchmarking of tools for dynamic analysis of vulnerabilities in web applications is something that is done periodically, because these tools from time to time update their knowledge base and search algorithms, in order to improve their accuracy. Unfortunately, the vast majority of these evaluations are made by software enthusiasts who publish their results on blogs or on non-academic websites and always with the same evaluation methodology. Similarly, academics who have carried out this type of analysis from a scientific approach, the majority, make their analysis within the same methodology as well the empirical authors. This paper is based on the interest of finding answers to questions that many users of this type of tools have been asking over the years, such as, to know if the tool truly test and evaluate every vulnerability that it ensures do, or if the tool, really, deliver a real report of all the vulnerabilities tested and exploited. This kind of questions have also motivated previous work but without real answers. The aim of this paper is to show results that truly answer, at least on the tested tools, all those unanswered questions. All the results have been obtained by changing the common model of benchmarking used for all those previous works.

Keywords: Cybersecurity, IDS, security, web scanners, web vulnerabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
7325 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen

Abstract:

Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.

Keywords: Automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
7324 Understanding How Money Laundering and Financing of Terrorism Are Conducted through the Real Estate Sector in the Middle East and North Africa Region

Authors: Haytham Yassine

Abstract:

This research seeks to identify how money laundering activities are executed through the real estate sector. This article provides academics with literature on the topic and provides scholars, and practitioners with a better understanding of the risks and challenges involved. Data are gathered through survey in the Middle East and North Africa region and review of the available research. The results of the analysis will help identifying the factors attracting criminals to the real estate sector and develop an understanding of the methods used to launder illicit funds through this sector and the indicators of suspicion for reporting entities. Further analysis reveals the risks posed by money laundering and terrorist financing on the real estate sector and challenges facing states in this regard.

Keywords: Money laundering, terrorism financing, real estate sector, Middle East and North Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
7323 Development of a Real-Time Energy Models for Photovoltaic Water Pumping System

Authors: Ammar Mahjoubi, Ridha Fethi Mechlouch, Belgacem Mahdhaoui, Ammar Ben Brahim

Abstract:

This purpose of this paper is to develop and validate a model to accurately predict the cell temperature of a PV module that adapts to various mounting configurations, mounting locations, and climates while only requiring readily available data from the module manufacturer. Results from this model are also compared to results from published cell temperature models. The models were used to predict real-time performance from a PV water pumping systems in the desert of Medenine, south of Tunisia using 60-min intervals of measured performance data during one complete year. Statistical analysis of the predicted results and measured data highlight possible sources of errors and the limitations and/or adequacy of existing models, to describe the temperature and efficiency of PV-cells and consequently, the accuracy of performance of PV water pumping systems prediction models.

Keywords: Temperature of a photovoltaic module, Predicted models, PV water pumping systems efficiency, Simulation, Desert of southern Tunisia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
7322 3D Star Skeleton for Fast Human Posture Representation

Authors: Sungkuk Chun, Kwangjin Hong, Keechul Jung

Abstract:

In this paper, we propose an improved 3D star skeleton technique, which is a suitable skeletonization for human posture representation and reflects the 3D information of human posture. Moreover, the proposed technique is simple and then can be performed in real-time. The existing skeleton construction techniques, such as distance transformation, Voronoi diagram, and thinning, focus on the precision of skeleton information. Therefore, those techniques are not applicable to real-time posture recognition since they are computationally expensive and highly susceptible to noise of boundary. Although a 2D star skeleton was proposed to complement these problems, it also has some limitations to describe the 3D information of the posture. To represent human posture effectively, the constructed skeleton should consider the 3D information of posture. The proposed 3D star skeleton contains 3D data of human, and focuses on human action and posture recognition. Our 3D star skeleton uses the 8 projection maps which have 2D silhouette information and depth data of human surface. And the extremal points can be extracted as the features of 3D star skeleton, without searching whole boundary of object. Therefore, on execution time, our 3D star skeleton is faster than the “greedy" 3D star skeleton using the whole boundary points on the surface. Moreover, our method can offer more accurate skeleton of posture than the existing star skeleton since the 3D data for the object is concerned. Additionally, we make a codebook, a collection of representative 3D star skeletons about 7 postures, to recognize what posture of constructed skeleton is.

Keywords: computer vision, gesture recognition, skeletonization, human posture representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
7321 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nožička

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, Real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073
7320 Low-Latency and Low-Overhead Path Planning for In-band Network-Wide Telemetry

Authors: Penghui Zhang, Hua Zhang, Jun-Bo Wang, Cheng Zeng, Zijian Cao

Abstract:

With the development of software-defined networks and programmable data planes, in-band network telemetry (INT) has become an emerging technology in communications because it can get accurate and real-time network information. However, due to the expansion of the network scale, existing telemetry systems, to the best of the authors’ knowledge, have difficulty in meeting the common requirements of low overhead, low latency and full coverage for traffic measurement. This paper proposes a network-wide telemetry system with a low-latency low-overhead path planning (INT-LLPP). This paper builds a mathematical model to analyze the telemetry overhead and latency of INT systems. Then, we adopt a greedy-based path planning algorithm to reduce the overhead and latency of the network telemetry with the full network coverage. The simulation results show that network-wide telemetry is achieved and the telemetry overhead can be reduced significantly compared with existing INT systems. INT-LLPP can control the system latency to get real-time network information.

Keywords: Network telemetry, network monitoring, path planning, low latency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185
7319 A Novel Approach to Optimal Cutting Tool Replacement

Authors: Cem Karacal, Sohyung Cho, William Yu

Abstract:

In metal cutting industries, mathematical/statistical models are typically used to predict tool replacement time. These off-line methods usually result in less than optimum replacement time thereby either wasting resources or causing quality problems. The few online real-time methods proposed use indirect measurement techniques and are prone to similar errors. Our idea is based on identifying the optimal replacement time using an electronic nose to detect the airborne compounds released when the tool wear reaches to a chemical substrate doped into tool material during the fabrication. The study investigates the feasibility of the idea, possible doping materials and methods along with data stream mining techniques for detection and monitoring different phases of tool wear.

Keywords: Tool condition monitoring, cutting tool replacement, data stream mining, e-Nose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
7318 Lower Bound of Time Span Product for a General Class of Signals in Fractional Fourier Domain

Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform which is often symbolized as the rotation in time- frequency plane. Similar to the product of time and frequency span which provides the Uncertainty Principle for the classical Fourier domain, there has not been till date an Uncertainty Principle for the Fractional Fourier domain for a generalized class of finite energy signals. Though the lower bound for the product of time and Fractional Fourier span is derived for the real signals, a tighter lower bound for a general class of signals is of practical importance, especially for the analysis of signals containing chirps. We hence formulate a mathematical derivation that gives the lower bound of time and Fractional Fourier span product. The relation proves to be utmost importance in taking the Fractional Fourier Transform with adaptive time and Fractional span resolutions for a varied class of complex signals.

Keywords: Fractional Fourier Transform, uncertainty principle, Fractional Fourier Span, amplitude, phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
7317 Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow

Authors: Jungho Choi, Youngwan Cho

Abstract:

The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.

Keywords: moving object recognition, moving object tracking, SURF, Optical Flow, Multi-Thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
7316 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances

Authors: Sayed Amir Hamzeh Mirkheshti

Abstract:

Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.

Keywords: Wind energy project; uncertain resources; risks; Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
7315 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces

Authors: Paula Verdugo-Hernández, Patricio Cumsille

Abstract:

We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of Mathematical Working Spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.

Keywords: Convergence, graphical representations, Mathematical Working Spaces, paradigms of real analysis, real number sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
7314 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: Big data, bus headway prediction, machine learning, public transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
7313 An Implementation of a Configurable UART-to-Ethernet Converter

Authors: Jungho Moon, Myunggon Yoon

Abstract:

This paper presents an implementation of a configurable UART-to-Ethernet converter using an ARM-based 32-bit microcontroller as well as a dedicated configuration program running on a PC for configuring the operating parameters of the converter. The program was written in Python. Various parameters pertaining to the operation of the converter can be modified by the configuration program through the Ethernet interface of the converter. The converter supports 3 representative asynchronous serial communication protocols, RS-232, RS-422, and RS-485 and supports 3 network modes, TCP/IP server, TCP/IP client, and UDP client. The TCP/IP and UDP protocols were implemented on the microcontroller using an open source TCP/IP protocol stack called lwIP (A lightweight TCP/IP) and FreeRTOS, a free real-time operating system for embedded systems. Due to the use of a real-time operating system, the firmware of the converter was implemented as a multi-thread application and as a result becomes more modular and easier to develop. The converter can provide a seamless bridge between a serial port and an Ethernet port, thereby allowing existing legacy apparatuses with no Ethernet connectivity to communicate using the Ethernet protocol.

Keywords: Converter, embedded systems, Ethernet, lwIP, UART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
7312 Accurate Position Electromagnetic Sensor Using Data Acquisition System

Authors: Z. Ezzouine, A. Nakheli

Abstract:

This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.

Keywords: Electromagnetic sensor, data acquisition, accurately, position measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
7311 Dynamic Background Updating for Lightweight Moving Object Detection

Authors: Kelemewerk Destalem, Jungjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo

Abstract:

Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a simple moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.

Keywords: Background subtraction, background updating, real time and lightweight algorithm, temporal difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
7310 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: Algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
7309 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment

Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Keywords: Time Utility Function/ Utility Accrual (TUF/UA) scheduling, Real-time system (RTS), Backward Recovery, Multiprocessor, Discrete Event Simulation (DES).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
7308 A Novel GNSS Integrity Augmentation System for Civil and Military Aircraft

Authors: Roberto Sabatini, Terry Moore, Chris Hill

Abstract:

This paper presents a novel Global Navigation Satellite System (GNSS) Avionics Based Integrity Augmentation (ABIA) system architecture suitable for civil and military air platforms, including Unmanned Aircraft Systems (UAS). Taking the move from previous research on high-accuracy Differential GNSS (DGNSS) systems design, integration and experimental flight test activities conducted at the Italian Air Force Flight Test Centre (CSV-RSV), our research focused on the development of a novel approach to the problem of GNSS ABIA for mission- and safety-critical air vehicle applications and for multi-sensor avionics architectures based on GNSS. Detailed mathematical models were developed to describe the main causes of GNSS signal outages and degradation in flight, namely: antenna obscuration, multipath, fading due to adverse geometry and Doppler shift. Adopting these models in association with suitable integrity thresholds and guidance algorithms, the ABIA system is able to generate integrity cautions (predictive flags) and warnings (reactive flags), as well as providing steering information to the pilot and electronic commands to the aircraft/UAS flight control systems. These features allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. In other words, this novel ABIA system addresses all three cornerstones of GNSS integrity augmentation in mission- and safety-critical applications: prediction (caution flags), reaction (warning flags) and correction (alternate flight path computation).

Keywords: Global Navigation Satellite Systems (GNSS), Integrity Augmentation, Unmanned Aircraft Systems, Aircraft Based Augmentation, Avionics Based Integrity Augmentation, Safety-Critical Applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3194
7307 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation

Authors: Christhu Raj M. R., Rajeev Sukumaran

Abstract:

Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.

Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
7306 Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study

Authors: M. Ramadan, B. Salah

Abstract:

This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer.

Keywords: Lean manufacturing, Industry 4.0, radio frequency identification, value stream mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
7305 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems

Authors: Semih Demir, Anil Celebi

Abstract:

Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.

Keywords: Clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
7304 Sensor Fusion Based Discrete Kalman Filter for Outdoor Robot Navigation

Authors: Mbaitiga Zacharie

Abstract:

The objective of the presented work is to implement the Kalman Filter into an application that reduces the influence of the environmental changes over the robot expected to navigate over a terrain of varying friction properties. The Discrete Kalman Filter is used to estimate the robot position, project the estimated current state ahead at time through time update and adjust the projected estimated state by an actual measurement at that time via the measurement update using the data coming from the infrared sensors, ultrasonic sensors and the visual sensor respectively. The navigation test has been performed in a real world environment and has been found to be robust.

Keywords: Kalman filter, sensors fusion, robot navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080