Search results for: Critical element analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10188

Search results for: Critical element analysis

9828 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Toufik Maalem, Oussama Temami

Abstract:

In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.

Keywords: Displacement fields, finite elements, plate bending, Kirchhoff theory, strain based approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
9827 Gas Detonation Forming by a Mixture of H2+O2 Detonation

Authors: Morteza Khaleghi Meybodi, Hossein Bisadi

Abstract:

Explosive forming is one of the unconventional techniques in which, most commonly, the water is used as the pressure transmission medium. One of the newest methods in explosive forming is gas detonation forming which uses a normal shock wave derived of gas detonation, to form sheet metals. For this purpose a detonation is developed from the reaction of H2+O2 mixture in a long cylindrical detonation tube. The detonation wave goes through the detonation tube and acts as a blast load on the steel blank and forms it. Experimental results are compared with a finite element model; and the comparison of the experimental and numerical results obtained from strain, thickness variation and deformed geometry is carried out. Numerical and experimental results showed approximately 75 – 90 % similarity in formability of desired shape. Also optimum percent of gas mixture obtained when we mix 68% H2 with 32% O2.

Keywords: Explosive forming, High strain rate, Gas detonation, Finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
9826 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process

Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko

Abstract:

A large variety of pipe flange is required in marine and construction industry. Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts. This approach is very simple and widely used for a long time; however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area. In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented. This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.

Keywords: Cold forging, FEA, finite element analysis, Forge- 3D, rotating forming, tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
9825 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines

Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović

Abstract:

This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.  

Keywords: Wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emissions, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
9824 Strain Based Evaluation of Dents in Pressurized Pipes

Authors: Maziar Ramezani, Thomas Neitzert

Abstract:

A dent is a gross distortion of the pipe cross-section. Dent depth is defined as the maximum reduction in the diameter of the pipe compared to the original diameter. Pipeline dent finite element (FE) simulation and theoretical analysis are conducted in this paper to develop an understanding of the geometric characteristics and strain distribution in the pressurized dented pipe. Based on the results, the magnitude of the denting force increases significantly with increasing the internal pressure, and the maximum circumferential and longitudinal strains increase by increasing the internal pressure and the dent depth. The results can be used for characterizing dents and ranking their risks to the integrity of a pipeline.

Keywords: dented steel pipelines, Finite element model, Internal pressure, Strain distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5492
9823 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.

Keywords: Aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
9822 Development of Anterior Lumbar Interbody Fusion (ALIF) PEEK Cage Based On the Korean Lumbar Anatomical Information

Authors: Chang Soo Chon, Cheol Woong Ko, Han Sung Kim

Abstract:

The aim of this study is to develop an anterior lumbar interbody fusion (ALIF) PEEK cage suitable for Korean people. In this study, CT images were obtained from Korean male (173cm, 71kg) and 3D Korean lumbar models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of anterior lumbar interbody fusion (ALIF) PEEK Cage were selected using the morphological measurement information of the Korean Lumbar models. Through finite element analysis and mechanical tests, the developed ALIFPEEK Cage prototype was compared with the Fidji Cage (Zimmer. Inc, USA) and it was found that the ALIF prototype showed similar and/or superior mechanical performance compared to the FidJi Cage. Also, clinical validation for the ALIF PEEK Cage prototype was carried out to check predictable troubles in surgical operations. Finally, it is considered that the convenience and stability of the prototype was clinically verified.

Keywords: Interbody fusion, PEEK, implant, finite element analysis, lumbar, spine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871
9821 Optimizing Organizational Performance: The Critical Role of Headcount Budgeting in Strategic Alignment and Financial Stability

Authors: Shobhit Mittal

Abstract:

Headcount budgeting stands as a pivotal element in organizational financial management, extending beyond traditional budgeting to encompass strategic resource allocation for workforce-related expenses. This process is integral to maintaining financial stability and fostering a productive workforce, requiring a comprehensive analysis of factors such as market trends, business growth projections, and evolving workforce skill requirements. It demands a collaborative approach, primarily involving Human Resources (HR) and finance departments, to align workforce planning with an organization's financial capabilities and strategic objectives. The dynamic nature of headcount budgeting necessitates continuous monitoring and adjustment in response to economic fluctuations, business strategy shifts, technological advancements, and market dynamics. Its significance in talent management is also highlighted, aligning financial planning with talent acquisition and retention strategies to ensure a competitive edge in the market. The consequences of incorrect headcount budgeting are explored, showing how it can lead to financial strain, operational inefficiencies, and hindered strategic objectives. Examining case studies like IBM's strategic workforce rebalancing and Microsoft's shift for long-term success, the importance of aligning headcount budgeting with organizational goals is underscored. These examples illustrate that effective headcount budgeting transcends its role as a financial tool, emerging as a strategic element crucial for an organization's success. This necessitates continuous refinement and adaptation to align with evolving business goals and market conditions, highlighting its role as a key driver in organizational success and sustainability.

Keywords: Strategic planning, fiscal budget, headcount planning, resource allocation, financial management, decision-making, operational efficiency, risk management, headcount budget.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158
9820 Numerical Analyze of Corona Discharge on HVDC Transmission Lines

Authors: H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj

Abstract:

This study and the field test comparisons were carried out on the Algerian Derguna – Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system.

Keywords: Corona discharge, Electric field, Finite element method, HVDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
9819 Do Cultural Differences in Successful ERP Implementations Exist?

Authors: Jaideep Motwani, Asli Yagmur Akbulut

Abstract:

Using a methodology grounded in business process change theory, we investigate the critical success factors that affect ERP implementation success in United States and India. Specifically, we examine the ERP implementation at two case study companies, one in each country. Our findings suggest that certain factors that affect the success of ERP implementations are not culturally bound, whereas some critical success factors depend on the national culture of the country in which the system is being implemented. We believe that the understanding of these critical success factors will deepen the understanding of ERP implementations and will help avoid implementation mistakes, thereby increasing the rate of success in culturally different contexts. Implications of the findings and future research directions for both academicians and practitioners are also discussed.

Keywords: Critical Success Factors, Culture, Enterprise Resource Planning Systems, India, United States

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
9818 Numerical Analysis of Effect of Crack Location on the Crack Breathing Behavior

Authors: H. M. Mobarak, Helen Wu, Keqin Xiao

Abstract:

In this work, a three-dimensional finite element model was developed to investigate the crack breathing behavior at different crack locations considering the effect of unbalance force. A two-disk rotor with a crack is simulated using ABAQUS. The duration of each crack status (open, closed and partially open/closed) during a full shaft rotation was examined to analyse the crack breathing behavior. Unbalanced shaft crack breathing behavior was found to be different at different crack locations. The breathing behavior of crack along the shaft length is divided into different regions depending on the unbalance force and crack location. The simulated results in this work can be further utilised to obtain the time-varying stiffness matrix of the cracked shaft element under the influence of unbalance force.

Keywords: Crack breathing, crack location, slant crack, unbalance force, rotating shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
9817 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
9816 Improvement of Stator Slot Structure based on Electro-Thermal Analysis in HV Generator

Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi

Abstract:

High voltage generators are being subject to higher voltage rating and are being designed to operate in harsh conditions. Stator windings are the main component of generators in which Electrical, magnetically and thermal stresses remain major failures for insulation degradation accelerated aging. A large number of generators failed due to stator winding problems, mainly insulation deterioration. Insulation degradation assessment plays vital role in the asset life management. Mostly the stator failure is catastrophic causing significant damage to the plant. Other than generation loss, stator failure involves heavy repair or replacement cost. Electro thermal analysis is the main characteristic for improvement design of stator slot-s insulation. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electro thermal performance is Finite Element Method (FEM) which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical and thermal stresses in order to increase the power of generator in the same volume of core. This paper describes the process used to perform classical design and improvement analysis of stator slot-s insulation.

Keywords: Electromagnetic field, field distribution, insulation, winding, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
9815 An Experimentally Validated Thermo- Mechanical Finite Element Model for Friction Stir Welding in Carbon Steels

Authors: A. H. Kheireddine, A. A. Khalil, A. H. Ammouri, G. T. Kridli, R. F. Hamade

Abstract:

Solidification cracking and hydrogen cracking are some defects generated in the fusion welding of ultrahigh carbon steels. However, friction stir welding (FSW) of such steels, being a solid-state technique, has been demonstrated to alleviate such problems encountered in traditional welding. FSW include different process parameters that must be carefully defined prior processing. These parameters included but not restricted to: tool feed, tool RPM, tool geometry, tool tilt angle. These parameters form a key factor behind avoiding warm holes and voids behind the tool and in achieving a defect-free weld. More importantly, these parameters directly affect the microstructure of the weld and hence the final mechanical properties of weld. For that, 3D finite element (FE) thermo-mechanical model was developed using DEFORM 3D to simulate FSW of carbon steel. At points of interest in the joint, tracking is done for history of critical state variables such as temperature, stresses, and strain rates. Typical results found include the ability to simulate different weld zones. Simulations predictions were successfully compared to experimental FSW tests. It is believed that such a numerical model can be used to optimize FSW processing parameters to favor desirable defect free weld with better mechanical properties.

Keywords: Carbon Steels, DEFORM 3D, FEM, Friction stir welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
9814 Ads on Social Issues: A Tool for Improving Critical Thinking Skills in a Foreign Language Classroom

Authors: Fonseca Jully, Chia Maribel, Rodríguez Ilba

Abstract:

This paper is a qualitative research report. A group of students form a public university in a small town in Colombia participated in this study which aimed at describing to what extend the use of social ads, published on the internet, helped to develop their critical thinking skills. Students’ productions, field notes, video recordings and direct observation were the instruments and techniques used by the researches in order to gather the data which was analyzed under the principles of grounded theory and triangulation. The implementation of social ads into the classroom evidenced a noticeable improvement in students’ ability to interpret and argue social issues, as well as, their self-improvement in oral and written production in English, as a foreign language.

Keywords: Ads, critical argumentation, critical thinking, social issues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
9813 Ten Limit Cycles in a Quintic Lyapunov System

Authors: Li Feng

Abstract:

In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated.With the help of computer algebra system MATHEMATICA, the first 10 quasi Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 10 small amplitude limit cycles created from the three order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems. At last, we give an system which could bifurcate 10 limit circles.

Keywords: Three-order nilpotent critical point, center-focus problem, bifurcation of limit cycles, Quasi-Lyapunov constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
9812 A Finite Element Model for Estimating Young-s Modulus of Carbon Nanotube Reinforced Composites Incorporating Elastic Cross-Links

Authors: Kaveh PourAkbar Saffar, Nima JamilPour, Ahmad Raeisi Najafi, Gholamreza Rouhi, Ahmad Reza Arshi, Abdolhossein Fereidoon

Abstract:

The presence of chemical bonding between functionalized carbon nanotubes and matrix in carbon nanotube reinforced composites is modeled by elastic beam elements representing covalent bonding characteristics. Neglecting other reinforcing mechanisms in the composite such as relatively weak interatomic Van der Waals forces, this model shows close results to the Rule of Mixtures model-s prediction for effective Young-s modulus of a Representative Volume Element of composite for small volume fractions (~1%) and high aspect ratios (L/D>200) of CNTs.

Keywords: Beam Element, Carbon Nanotube Reinforced Composite, Cross-link, Young's modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
9811 Application of Artificial Neural Network in the Investigation of Bearing Defects

Authors: S. Sendhil Kumar, M. Senthil Kumar

Abstract:

Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.

Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
9810 Improvement of Stator Slot Structure based on Insulation Stresses Analysis in HV Generator

Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi

Abstract:

High voltage generators are being subject to higher voltage rating and are being designed to operate in harsh conditions. Stator windings are the main component of generators in which Electrical, magnetical and thermal stresses remain major failures for insulation degradation accelerated aging. A large number of generators failed due to stator winding problems, mainly insulation deterioration. Insulation degradation assessment plays vital role in the asset life management. Mostly the stator failure is catastrophic causing significant damage to the plant. Other than generation loss, stator failure involves heavy repair or replacement cost. Electro thermal analysis is the main characteristic for improvement design of stator slot-s insulation. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electro thermal performance is Finite Element Method (FEM) which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical and thermal stresses in order to increase the power of generator in the same volume of core. This paper describes the process used to perform classical design and improvement analysis of stator slot-s insulation.

Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
9809 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University

Authors: Suttipong Boonphadung, Thassanant Unnanantn

Abstract:

This research focused on comparing the critical thinking of the teacher students before and after using Miller’s Model learning activities and investigating their opinions. The sampling groups were (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.

Keywords: Critical thinking, Miller’s model, Opinions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
9808 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand

Authors: Won Taek Oh, Adin Richard

Abstract:

Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.

Keywords: Critical height, matric suction, unsaturated soil, unsupported trench.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
9807 The Effect of Press Fit on Osseointegration of Acetabular Cup

Authors: Nor Azali Azmir, Iskhrizat Taib, Mohammed Rafiq Abdul Kadir

Abstract:

The primary cause of Total Hip Replacement (THR) failure for younger patients is aseptic loosening. This complication is twice more likely to happen in acetabular cup than in femoral stem. Excessive micromotion between bone and implant will cause loosening and it depends in patient activities, age and bone. In this project, the effects of different metal back design of press fit on osseointegration of the acetabular cup are carried out. Commercial acetabular cup designs, namely Spiked, Superfix and Quadrafix are modelled and analyzed using commercial finite element software. The diameter of acetabular cup is based on the diameter of acetabular rim to make sure the component fit to the acetabular cavity. A new design of acetabular cup are proposed and analyzed to get better osseointegration between the bones and implant interface. Results shows that the proposed acetabular cup designs are more stable compared to other designs with respect to stress and displacement aspects.

Keywords: Finite element analysis, total hip replacement, acetabular cup, loosening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
9806 What is the Key Element for the Territory's State of Development?

Authors: J. Lonska, V. Boronenko

Abstract:

The result of process of territory-s development is the territory-s state of development (TSoD), which is pointed towards the provision and improvement of people-s life conditions. The authors offer to measure the TSoD according to their own developed model. Using the available statistical data regarding the values of model-s elements, the authors empirically show which element mainly determines the TSoD. The findings of the research showed that the key elements of the TSoD are the “Material welfare of people" and “People-s health". Performing a deeper statistical analysis of correlation between these elements, it turned out that it is not so necessary for a country to be bent on trying to increase the material growth of a territory, because a relatively high index of life expectancy at birth could be ensured also by much more modest material resources. On the other hand, the economical feedback of longer lifespan within countries with lower material performance is also relatively low.

Keywords: Development indices, health, territory's state of development, wealth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
9805 Finite Element Simulation of Deep Drawing Process to Minimize Earing

Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah

Abstract:

Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.

Keywords: Finite element simulation, deep drawing, earing, anisotropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
9804 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: Structure analysis, aluminum piston, MgZrO3, YTZ, mullite and alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784
9803 In Vitro Study of Coded Transmission in Synthetic Aperture Ultrasound Imaging Systems

Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski

Abstract:

In the paper the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging is presented. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Moreover signal-to-noise ratio and penetration depth are improved while maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16- bit Golay coded sequences at nominal frequency 4 MHz was used. To generate a spherical wave covering the full image region a single element transmission aperture was used and all the elements received the echo signals. The comparison of 2D ultrasound images of the tissue mimicking phantom and in vitro measurements of the beef liver is presented to illustrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.

Keywords: Golay coded sequences, radiation pattern, signal processing, synthetic aperture, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
9802 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
9801 Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings

Authors: Haider M. Alsaeq

Abstract:

This research investigates the effects of the opening shape and location on the structural behavior of reinforced concrete deep beam with openings, while keeping the opening size unchanged. The software ANSYS 12.1 is used to handle the nonlinear finite element analysis. The ultimate strength of reinforced concrete deep beam with opening obtained by ANSYS 12.1 shows fair agreement with the experimental results, with a difference of no more than 20%. The present work concludes that the opening location has much more effect on the structural strength than the opening shape. It was concluded that placing the openings near the upper corners of the deep beam may double the strength, and the use of a rectangular narrow opening, with the long sides in the horizontal direction, can save up to 40% of structural strength of the deep beam.

Keywords: Deep Beams, Finite Element, Opening, Reinforced Concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4292
9800 Thermal Analysis of Toroidal Transformers Using Finite Element Method

Authors: Adrian T.

Abstract:

In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Temperature distribution, thermal analysis, toroidal transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3578
9799 Applying Element Free Galerkin Method on Beam and Plate

Authors: Mahdad M’hamed, Belaidi Idir

Abstract:

This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate hole

Keywords: Numerical computation, element-free Galerkin, moving least squares, meshless methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436