Search results for: Series/Parallel network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4019

Search results for: Series/Parallel network

239 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: Surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
238 Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep

Authors: Wojciech Górecki, Anna Sowiżdżał, Grzegorz Machowski, Tomasz Maćkowski, Bartosz Papiernik, Michał Stefaniuk

Abstract:

The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.

Keywords: Autochthonous Miocene, Carpathian Foredeep, Poland, shale gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
237 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound

Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner

Abstract:

Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.

Keywords: Filler, flowability, jute fiber, nonwoven, sheet molding compound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
236 110 MW Geothermal Power Plant Multiple Simulator, Using Wireless Technology

Authors: Guillermo Romero-Jiménez, Luis A. Jiménez-Fraustro, Mayolo Salinas-Camacho, Heriberto Avalos-Valenzuela

Abstract:

A geothermal power plant multiple simulator for operators training is presented. The simulator is designed to be installed in a wireless local area network and has a capacity to train one to six operators simultaneously, each one with an independent simulation session. The sessions must be supervised only by one instructor. The main parts of this multiple simulator are: instructor and operator-s stations. On the instructor station, the instructor controls the simulation sessions, establishes training exercises and supervises each power plant operator in individual way. This station is hosted in a Main Personal Computer (NS) and its main functions are: to set initial conditions, snapshots, malfunctions or faults, monitoring trends, and process and soft-panel diagrams. On the other hand the operators carry out their actions over the power plant simulated on the operator-s stations; each one is also hosted in a PC. The main software of instructor and operator-s stations are executed on the same NS and displayed in PCs through graphical Interactive Process Diagrams (IDP). The geothermal multiple simulator has been installed in the Geothermal Simulation Training Center (GSTC) of the Comisi├│n Federal de Electricidad, (Federal Commission of Electricity, CFE), Mexico, and is being utilized as a part of the training courses for geothermal power plant operators.

Keywords: Geothermal power plant, multiple simulator, training operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
235 Some Studies on Temperature Distribution Modeling of Laser Butt Welding of AISI 304 Stainless Steel Sheets

Authors: N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy

Abstract:

In this research work, investigations are carried out on Continuous Wave (CW) Nd:YAG laser welding system after preliminary experimentation to understand the influencing parameters associated with laser welding of AISI 304. The experimental procedure involves a series of laser welding trials on AISI 304 stainless steel sheets with various combinations of process parameters like beam power, beam incident angle and beam incident angle. An industrial 2 kW CW Nd:YAG laser system, available at Welding Research Institute (WRI), BHEL Tiruchirappalli, is used for conducting the welding trials for this research. After proper tuning of laser beam, laser welding experiments are conducted on AISI 304 grade sheets to evaluate the influence of various input parameters on weld bead geometry i.e. bead width (BW) and depth of penetration (DOP). From the laser welding results, it is noticed that the beam power and welding speed are the two influencing parameters on depth and width of the bead. Three dimensional finite element simulation of high density heat source have been performed for laser welding technique using finite element code ANSYS for predicting the temperature profile of laser beam heat source on AISI 304 stainless steel sheets. The temperature dependent material properties for AISI 304 stainless steel are taken into account in the simulation, which has a great influence in computing the temperature profiles. The latent heat of fusion is considered by the thermal enthalpy of material for calculation of phase transition problem. A Gaussian distribution of heat flux using a moving heat source with a conical shape is used for analyzing the temperature profiles. Experimental and simulated values for weld bead profiles are analyzed for stainless steel material for different beam power, welding speed and beam incident angle. The results obtained from the simulation are compared with those from the experimental data and it is observed that the results of numerical analysis (FEM) are in good agreement with experimental results, with an overall percentage of error estimated to be within ±6%.

Keywords: Laser welding, Butt weld, 304 SS, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4987
234 A Commercial Building Plug Load Management System That Uses Internet of Things Technology to Automatically Identify Plugged-In Devices and Their Locations

Authors: Amy LeBar, Kim L. Trenbath, Bennett Doherty, William Livingood

Abstract:

Plug and process loads (PPLs) account for a large portion of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering, and data storage. A laboratory proof of concept (PoC) demonstrated all but the energy metering capability, and these capabilities were validated using a series of system tests. The PoC was able to identify when a device was plugged into an outlet and the location of the device in the building. When a device was moved, the PoC’s dashboard and database were automatically updated with the new location. The PoC implemented controls to devices from the system dashboard so that devices maintained correct schedules regardless of where they were plugged in within the building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. An ATLIS-based system could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.

Keywords: commercial buildings, grid-interactive efficient buildings, miscellaneous electric loads, plug loads, plug load management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
233 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
232 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
231 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
230 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications

Authors: A. Faro, D. Giordano, F. Maiorana

Abstract:

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.

Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
229 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing

Authors: Sunil Patel, Pallab Maji

Abstract:

To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.

Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
228 Alkali Silica Reaction Mitigation and Prevention Measures for Arkansas Local Aggregates

Authors: Amin Kamal Akhnoukh, Lois Zaki Kamel, Magued Mourad Barsoum

Abstract:

The objective of this research is to mitigate and prevent the alkali silica reactivity (ASR) in highway construction projects. ASR is a deleterious reaction initiated when the silica content of the aggregate reacts with alkali hydroxides in cement in the presence of relatively high moisture content. The ASR results in the formation of an expansive white colored gel-like material which forms the destructive tensile stresses inside hardened concrete. In this research, different types of local aggregates available in the State of Arkansas were mixed and mortar bars were poured according to the ASTM specifications. Mortar bars expansion was measured versus time and aggregates with potential ASR problems were detected. Different types of supplementary cementitious materials (SCMs) were used in remixing mortar bars with highly reactive aggregates. Length changes for remixed bars proved that different types of SCMs can be successfully used in reducing the expansive effect of ASR. SCMs percentage by weight is highly dependent on the SCM type. The result of this study will help avoiding future losses due to ASR cracking in construction project and reduce the maintenance, repair, and replacement budgets required for highways network.

Keywords: Alkali Silica Reaction, Aggregates, Moisture, Cracks, Mortar Bar Test supplementary cementitious materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
227 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition

Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu

Abstract:

In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.

Keywords: Biometry, image processing, pattern recognition, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
226 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait

Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh

Abstract:

In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.

Keywords: GPS based household surveys, transportation infrastructure, origin-destination trip matrices, traffic forecasts, transportation demand modeling, travel behavior patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
225 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm

Authors: Tahseen Al-Shaikhli, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin

Abstract:

A concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. Furthermore, the objectives are to control the coordination problem which mainly depends on offset selection, and to estimate the uniform delay based on the offset choice at each signalized intersection. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show that the derived model minimizes the total uniform delay to almost half compared to conventional models; the mathematical objective function is robust; the algorithm convergence time is fast.

Keywords: Area traffic control, differential evolution, offset variable, sinusoidal periodic function, traffic flow, uniform delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366
224 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method

Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari

Abstract:

The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.

Keywords: Optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
223 High Speed Video Transmission for Telemedicine using ATM Technology

Authors: J. P. Dubois, H. M. Chiu

Abstract:

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

Keywords: ATM, multiplexing, queueing, telemedicine, VBR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
222 Quantitative and Fourier Transform Infrared Analysis of Saponins from Three Kenyan Ruellia Species: Ruellia prostrata, Ruellia lineari-bracteolata and Ruellia bignoniiflora

Authors: Christine O. Wangia, Jennifer A. Orwa, Francis W. Muregi, Patrick G. Kareru, Kipyegon Cheruiyot, Eric Guantai

Abstract:

Ruellia (syn. Dipteracanthus) species are wild perennial creepers belonging to the Acanthaceae family. These species are reported to possess anti-inflammatory, analgesic, antioxidant, gastroprotective, anticancer, and immuno-stimulant properties. Phytochemical screening of both aqueous and methanolic extracts of Ruellia species revealed the presence of saponins. Saponins have been reported to possess anti-inflammatory, antioxidant, immuno-stimulant, antihepatotoxic, antibacterial, anticarcinogenic, and antiulcerogenic activities. The objective of this study was to quantify and analyze the Fourier transform infrared (FTIR) spectra of saponins in crude extracts of three Kenyan Ruellia species namely Ruellia prostrata (RPM), Ruellia lineari-bracteolata (RLB) and Ruellia bignoniiflora (RBK). Sequential organic extraction of the ground whole plant material was done using petroleum ether (PE), chloroform, ethyl acetate (EtOAc), and absolute methanol by cold maceration, while aqueous extraction was by hot maceration. The plant powders and extracts were mixed with spectroscopic grade KBr and compressed into a pellet. The infrared spectra were recorded using a Shimadzu FTIR spectrophotometer of 8000 series in the range of 3500 cm-1 - 500 cm-1. Quantitative determination of the saponins was done using standard procedures. Quantitative analysis of saponins showed that RPM had the highest quantity of crude saponins (2.05% ± 0.03), followed by RLB (1.4% ± 0.15) and RBK (1.25% ± 0.11), respectively. FTIR spectra revealed the spectral peaks characteristic for saponins in RPM, RLB, and RBK plant powders, aqueous and methanol extracts; O-H absorption (3265 - 3393 cm-1), C-H absorption ranging from 2851 to 2924 cm-1, C=C absorbance (1628 - 1655 cm-1), oligosaccharide linkage (C-O-C) absorption due to sapogenins (1036 - 1042 cm-1). The crude saponins from RPM, RLB and RBK showed similar peaks to their respective extracts. The presence of the saponins in extracts of RPM, RLB and RBK may be responsible for some of the biological activities reported in the Ruellia species.1

Keywords: Ruellia bignoniiflora, Ruellia lineari-bracteolata, Ruellia prostrata, Saponins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191
221 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: Artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
220 Modeling and Analysis for Effective Capacity of a Cross-Layer Optimized Wireless Networks

Authors: Reham A. El-mayet, Hesham M. El-Badawy, Salwa H. Elramly

Abstract:

New generation mobile communication networks have the ability of supporting triple play. In order that, Orthogonal Frequency Division Multiplexing (OFDM) access techniques have been chosen to enlarge the system ability for high data rates networks. Many of cross-layer modeling and optimization schemes for Quality of Service (QoS) and capacity of downlink multiuser OFDM system were proposed. In this paper, the Maximum Weighted Capacity (MWC) based resource allocation at the Physical (PHY) layer is used. This resource allocation scheme provides a much better QoS than the previous resource allocation schemes, while maintaining the highest or nearly highest capacity and costing similar complexity. In addition, the Delay Satisfaction (DS) scheduling at the Medium Access Control (MAC) layer, which allows more than one connection to be served in each slot is used. This scheduling technique is more efficient than conventional scheduling to investigate both of the number of users as well as the number of subcarriers against system capacity. The system will be optimized for different operational environments: the outdoor deployment scenarios as well as the indoor deployment scenarios are investigated and also for different channel models. In addition, effective capacity approach [1] is used not only for providing QoS for different mobile users, but also to increase the total wireless network's throughput.

Keywords: Cross-layer, effective capacity, LTE, OFDM, QoS, resource allocation, wireless networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
219 Reduction of Power Losses in Distribution Systems

Authors: Y. Al-Mahroqi, I.A. Metwally, A. Al-Hinai, A. Al-Badi

Abstract:

Losses reduction initiatives in distribution systems have been activated due to the increasing cost of supplying electricity, the shortage in fuel with ever-increasing cost to produce more power, and the global warming concerns. These initiatives have been introduced to the utilities in shape of incentives and penalties. Recently, the electricity distribution companies in Oman have been incentivized to reduce the distribution technical and non-technical losses with an equal annual reduction rate for 6 years. In this paper, different techniques for losses reduction in Mazoon Electricity Company (MZEC) are addressed. In this company, high numbers of substation and feeders were found to be non-compliant with the Distribution System Security Standard (DSSS). Therefore, 33 projects have been suggested to bring non-complying 29 substations and 28 feeders to meet the planed criteria and to comply with the DSSS. The largest part of MZEC-s network (South Batinah region) was modeled by ETAP software package. The model has been extended to implement the proposed projects and to examine their effects on losses reduction. Simulation results have shown that the implementation of these projects leads to a significant improvement in voltage profile, and reduction in the active and the reactive power losses. Finally, the economical analysis has revealed that the implementation of the proposed projects in MZEC leads to an annual saving of about US$ 5 million.

Keywords: Losses Reduction, Technical Losses, Non-Technical Losses, Cost Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9370
218 A Traditional Settlement in a Modernized City: Yanbu, Saudi Arabia

Authors: Hisham Mortada

Abstract:

Transition in the urban configuration of Arab cities has never been as radical and visible as it has been since the turn of the last century. The emergence of new cities near historical settlements of Arabia has spawned a series of developments in and around the old city precincts. New developments are based on advanced technology and conform to globally prevalent standards of city planning, superseding the vernacular arrangements based on traditional norms that guided so-called ‘city planning’. Evidence to this fact are the extant Arab buildings present at the urban core of modern cities, which inform us about intricate spatial organization. Organization that subscribed to multiple norms such as, satisfying gender segregation and socialization, economic sustainability, and ensuring security and environmental coherence etc., within settlement compounds. Several participating factors achieved harmony in such an inclusive city—an organization that was challenged and apparently replaced by the new planning order in the face of growing needs of globalized, economy-centric and high-tech models of development. Communities found it difficult to acclimatize with the new western planning models that were implemented at a very large scale throughout the Kingdom, which later experienced spatial re-structuring to suit users’ needs. A closer look the ancient city of Yanbu, now flanked with such new developments, allows us to differentiate and track the beginnings of this unprecedented transition in settlement formations. This paper aims to elaborate the Arabian context offered to both the ‘traditional’ and ‘modern’ planning approaches, in order to understand challenges and solutions offered by both at different times. In the process it will also establish the inconsistencies and conflicts that arose with the shift in planning paradigm, from traditional-'cultural norms’, to modern-'physical planning', in the Arabian context. Thus, by distinguishing the two divergent planning philosophies, their impact of the Arabian morphology, relevance to lifestyle and suitability to the biophysical environment, it concludes with a perspective on sustainability particularly for in case of Yanbu.

Keywords: Yanbu, traditional architecture, Hijaz, coral building, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
217 Broadband PowerLine Communications: Performance Analysis

Authors: Justinian Anatory, Nelson Theethayi, M. M. Kissaka, N. H. Mvungi

Abstract:

Power line channel is proposed as an alternative for broadband data transmission especially in developing countries like Tanzania [1]. However the channel is affected by stochastic attenuation and deep notches which can lead to the limitation of channel capacity and achievable data rate. Various studies have characterized the channel without giving exactly the maximum performance and limitation in data transfer rate may be this is due to complexity of channel modeling being used. In this paper the channel performance of medium voltage, low voltage and indoor power line channel is presented. In the investigations orthogonal frequency division multiplexing (OFDM) with phase shift keying (PSK) as carrier modulation schemes is considered, for indoor, medium and low voltage channels with typical ten branches and also Golay coding is applied for medium voltage channel. From channels, frequency response deep notches are observed in various frequencies which can lead to reduce the achievable data rate. However, is observed that data rate up to 240Mbps is realized for a signal to noise ratio of about 50dB for indoor and low voltage channels, however for medium voltage a typical link with ten branches is affected by strong multipath and coding is required for feasible broadband data transfer.

Keywords: Powerline Communications, branched network, channel model, modulation, channel performance, OFDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
216 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms

Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano

Abstract:

CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.

Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
215 Evaluation of Aquifer Protective Capacity and Soil Corrosivity Using Geoelectrical Method

Authors: M. T. Tsepav, Y. Adamu, M. A. Umar

Abstract:

A geoelectric survey was carried out in some parts of Angwan Gwari, an outskirt of Lapai Local Government Area on Niger State which belongs to the Nigerian Basement Complex, with the aim of evaluating the soil corrosivity, aquifer transmissivity and protective capacity of the area from which aquifer characterisation was made. The G41 Resistivity Meter was employed to obtain fifteen Schlumberger Vertical Electrical Sounding data along profiles in a square grid network. The data were processed using interpex 1-D sounding inversion software, which gives vertical electrical sounding curves with layered model comprising of the apparent resistivities, overburden thicknesses, and depth. This information was used to evaluate longitudinal conductance and transmissivities of the layers. The results show generally low resistivities across the survey area and an average longitudinal conductance variation from 0.0237Siemens in VES 6 to 0.1261Siemens in VES 15 with almost the entire area giving values less than 1.0 Siemens. The average transmissivity values range from 96.45 Ω.m2 in VES 4 to 299070 Ω.m2 in VES 1. All but VES 4 and VES14 had an average overburden greater than 400 Ω.m2, these results suggest that the aquifers are highly permeable to fluid movement within, leading to the possibility of enhanced migration and circulation of contaminants in the groundwater system and that the area is generally corrosive.

Keywords: Geoelectric survey, corrosivity, protective capacity, transmissivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
214 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control

Authors: Rami N. Khushaba, Adel Al-Jumaily

Abstract:

The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.

Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
213 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm

Authors: Nameer N. EL-Emam

Abstract:

In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.

Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
212 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System

Authors: Ahmed Bensenouci

Abstract:

This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.

Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
211 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: Decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
210 Technique for Online Condition Monitoring of Surge Arrestors

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Lightning overvoltage phenomenon in power systems cannot be avoided; however, it can be controlled to certain extent. To prevent system failure, power system equipment must be protected against overvoltage. Metal Oxide Surge Arrestors (MOSA) are connected in the system to provide protection against overvoltages. Under normal working conditions, MOSA function as, insulators, offering a conductive path during overvoltage events. MOSA consists of zinc oxide elements (ZnO Blocks) which has non-linear V-I characteristics. The ZnO blocks are connected in series and fitted in ceramic or polymer housing. Over time, these components degrade due to continuous operation. The degradation of zinc oxide elements increases the leakage current flowing through the surge arrestors. This increased leakage current results in elevated temperatures within the surge arrester, further decreasing the resistance of the zinc oxide elements. Consequently, the leakage current increases, leading to higher temperatures within the MOSA. This cycle creates thermal runaway conditions for the MOSA. Once a surge arrester reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arrestors. Given that MOSA constitutes a core protective device for electrical power systems against transients, it contributes significantly to the reliable operation of power system networks. Therefore, periodic condition monitoring of surge arrestors is essential. Both online and offline condition monitoring techniques are available for surge arrestors. Offline condition monitoring techniques are not as popular because they require the removal of surge arrestors from the system, which requires system shutdown. Therefore, online condition monitoring techniques are more commonly used. This paper presents an evaluation technique for the surge arrester condition based on leakage current analysis. The maximum amplitudes of total leakage current (IT), fundamental resistive leakage current (IR), and third harmonic resistive leakage current (I3rd) are analyzed as indicators for surge arrester condition monitoring.

Keywords: Metal Oxide Surge Arrester, MOSA, Over voltage, total leakage current, resistive leakage current, third harmonic resistive leakage current, capacitive leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85