Search results for: Gravitational search algorithm (GSA)
143 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo
Abstract:
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364142 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835141 Understanding and Designing Situation-Aware Mobile and Ubiquitous Computing Systems
Authors: Kai Häussermann, Christoph Hubig, Paul Levi, Frank Leymann, Oliver Siemoneit, Matthias Wieland, Oliver Zweigle
Abstract:
Using spatial models as a shared common basis of information about the environment for different kinds of contextaware systems has been a heavily researched topic in the last years. Thereby the research focused on how to create, to update, and to merge spatial models so as to enable highly dynamic, consistent and coherent spatial models at large scale. In this paper however, we want to concentrate on how context-aware applications could use this information so as to adapt their behavior according to the situation they are in. The main idea is to provide the spatial model infrastructure with a situation recognition component based on generic situation templates. A situation template is – as part of a much larger situation template library – an abstract, machinereadable description of a certain basic situation type, which could be used by different applications to evaluate their situation. In this paper, different theoretical and practical issues – technical, ethical and philosophical ones – are discussed important for understanding and developing situation dependent systems based on situation templates. A basic system design is presented which allows for the reasoning with uncertain data using an improved version of a learning algorithm for the automatic adaption of situation templates. Finally, for supporting the development of adaptive applications, we present a new situation-aware adaptation concept based on workflows.Keywords: context-awareness, ethics, facilitation of system use through workflows, situation recognition and learning based on situation templates and situation ontology's, theory of situationaware systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759140 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations
Authors: Manop Aorpimai, Ponthep Navakitkanok
Abstract:
In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneouvre modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in groundtrack as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions.
Keywords: Flight Dynamics System, Orbit Propagation, Satellite Ephemeris, Thailand’s Earth Observation Satellite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040139 Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks
Authors: Kasthurirangan Gopalakrishnan, Marshall R. Thompson, Anshu Manik
Abstract:
This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.Keywords: Airfield pavements, ANN, backcalculation, newgeneration aircraft
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185138 Web Proxy Detection via Bipartite Graphs and One-Mode Projections
Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo
Abstract:
With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.
Keywords: Bipartite graph, clustering, one-mode projection, web proxy detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746137 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System
Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi
Abstract:
Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.
Keywords: Channel estimation, OFDM, pilot-assist, VLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668136 Star-Hexagon Transformer Supported UPQC
Authors: Yash Pal, A.Swarup, Bhim Singh
Abstract:
A new topology of unified power quality conditioner (UPQC) is proposed for different power quality (PQ) improvement in a three-phase four-wire (3P-4W) distribution system. For neutral current mitigation, a star-hexagon transformer is connected in shunt near the load along with three-leg voltage source inverters (VSIs) based UPQC. For the mitigation of source neutral current, the uses of passive elements are advantageous over the active compensation due to ruggedness and less complexity of control. In addition to this, by connecting a star-hexagon transformer for neutral current mitigation the over all rating of the UPQC is reduced. The performance of the proposed topology of 3P-4W UPQC is evaluated for power-factor correction, load balancing, neutral current mitigation and mitigation of voltage and currents harmonics. A simple control algorithm based on Unit Vector Template (UVT) technique is used as a control strategy of UPQC for mitigation of different PQ problems. In this control scheme, the current/voltage control is applied over the fundamental supply currents/voltages instead of fast changing APFs currents/voltages, thereby reducing the computational delay. Moreover, no extra control is required for neutral source current compensation; hence the numbers of current sensors are reduced. The performance of the proposed topology of UPQC is analyzed through simulations results using MATLAB software with its Simulink and Power System Block set toolboxes.Keywords: Power-factor correction, Load balancing, UPQC, Voltage and Current harmonics, Neutral current mitigation, Starhexagon transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328135 A Case Study on Optimization of Contractor’s Financing through Allocation of Subcontractors
Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.
Keywords: Cash flow optimization, payment plan, procurement management, subcontracting plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207134 Graph-based High Level Motion Segmentation using Normalized Cuts
Authors: Sungju Yun, Anjin Park, Keechul Jung
Abstract:
Motion capture devices have been utilized in producing several contents, such as movies and video games. However, since motion capture devices are expensive and inconvenient to use, motions segmented from captured data was recycled and synthesized to utilize it in another contents, but the motions were generally segmented by contents producers in manual. Therefore, automatic motion segmentation is recently getting a lot of attentions. Previous approaches are divided into on-line and off-line, where on-line approaches segment motions based on similarities between neighboring frames and off-line approaches segment motions by capturing the global characteristics in feature space. In this paper, we propose a graph-based high-level motion segmentation method. Since high-level motions consist of several repeated frames within temporal distances, we consider all similarities among all frames within the temporal distance. This is achieved by constructing a graph, where each vertex represents a frame and the edges between the frames are weighted by their similarity. Then, normalized cuts algorithm is used to partition the constructed graph into several sub-graphs by globally finding minimum cuts. In the experiments, the results using the proposed method showed better performance than PCA-based method in on-line and GMM-based method in off-line, as the proposed method globally segment motions from the graph constructed based similarities between neighboring frames as well as similarities among all frames within temporal distances.Keywords: Capture Devices, High-Level Motion, Motion Segmentation, Normalized Cuts
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316133 Work-Related Shoulder Lesions and Labor Lawsuits in Brazil: Cross-Sectional Study on Worker Health Actions Developed by Employers
Authors: Reinaldo Biscaro, Luciano R. Ferreira, Leonardo C. Biscaro, Raphael C. Biscaro, Isabela S. Vasconcelos, Laura C. R. Ferreira, Cristiano M. Galhardi, Erica P. Baciuk
Abstract:
Introduction: The present study had the objective to present the profile of workers with shoulder disorders related to labor lawsuits in Brazil. The study analyzed the association between the worker’s health and the actions performed by the companies related to injured professional. The research method performed a retrospective, cross-sectional and quantitative database analysis. The documents of labor lawsuits with shoulder injury registered at the Regional Labor Court in the 15th region (Campinas - São Paulo) were submitted to the medical examination and evaluated during the period from 2012 until 2015. The data collected were age, gender, onset of symptoms, length of service, current occupation, type of shoulder injury, referred complaints, type of acromion, associated or related diseases, company actions as CAT (workplace accident communication), compliance of NR7 by the organization (Environmental Risk Prevention Program - PPRA and Medical Coordination Program in Occupational Health - PCMSO). Results: From the 93 workers evaluated, there was a prevalence of men (58.1%), with a mean age of 42.6 y-o, and 54.8% were included in the age group 35-49 years. Regarding the length of work time in the company, 66.7% have worked for more than 5 years. There was an association between gender and current occupational status (p < 0.005), with predominance of women in household occupation (13 vs. 2) and predominance of unemployed men in job search situation (24 vs. 10) and reintegrated to work by judicial decision (8 vs. 2). There was also a correlation between pain and functional limitation (p < 0.01). There was a positive association of PPRA with the complaint of functional limitation and negative association with pain (p < 0.04). There was also a correlation between the sedentary lifestyle and the presence of PCMSO and PPRA (p < 0.04), and the absence of CAT in the companies (p < 0.001). It was concluded that the appearance or aggravation of osseous and articular shoulder pathologies in workers who have undertaken labor law suits seem to be associated with individual habits or inadequate labor practices. These data can help preventing the occurrence of these lesions by implementing local health promotion policies at work.Keywords: Work-related accidents, cross-sectional study, shoulder lesions, labor lawsuits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900132 Using Time-Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: A. S. Adesuyi, Z. Munch
Abstract:
This study investigates the use of a time-series of MODIS NDVI data to identify agricultural land cover change on an annual time step (2007 - 2012) and characterize the trend. Following an ISODATA classification of the MODIS imagery to selectively mask areas not agriculture or semi-natural, NDVI signatures were created to identify areas cereals and vineyards with the aid of ancillary, pictometry and field sample data for 2010. The NDVI signature curve and training samples were used to create a decision tree model in WEKA 3.6.9 using decision tree classifier (J48) algorithm; Model 1 including ISODATA classification and Model 2 not. These two models were then used to classify all data for the study area for 2010, producing land cover maps with classification accuracies of 77% and 80% for Model 1 and 2 respectively. Model 2 was subsequently used to create land cover classification and change detection maps for all other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices. Over the years as predicted by the land cover classification. Forty one percent of the catchment comprised of cereals with 35% possibly following a crop rotation system. Vineyards largely remained constant with only one percent conversion to vineyard from other land cover classes.Keywords: Change detection, Land cover, NDVI, time-series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289131 Effect of Scene Changing on Image Sequences Compression Using Zero Tree Coding
Authors: Mbainaibeye Jérôme, Noureddine Ellouze
Abstract:
We study in this paper the effect of the scene changing on image sequences coding system using Embedded Zerotree Wavelet (EZW). The scene changing considered here is the full motion which may occurs. A special image sequence is generated where the scene changing occurs randomly. Two scenarios are considered: In the first scenario, the system must provide the reconstruction quality as best as possible by the management of the bit rate (BR) while the scene changing occurs. In the second scenario, the system must keep the bit rate as constant as possible by the management of the reconstruction quality. The first scenario may be motivated by the availability of a large band pass transmission channel where an increase of the bit rate may be possible to keep the reconstruction quality up to a given threshold. The second scenario may be concerned by the narrow band pass transmission channel where an increase of the bit rate is not possible. In this last case, applications for which the reconstruction quality is not a constraint may be considered. The simulations are performed with five scales wavelet decomposition using the 9/7-tap filter bank biorthogonal wavelet. The entropy coding is performed using a specific defined binary code book and EZW algorithm. Experimental results are presented and compared to LEAD H263 EVAL. It is shown that if the reconstruction quality is the constraint, the system increases the bit rate to obtain the required quality. In the case where the bit rate must be constant, the system is unable to provide the required quality if the scene change occurs; however, the system is able to improve the quality while the scene changing disappears.Keywords: Image Sequence Compression, Wavelet Transform, Scene Changing, Zero Tree, Bit Rate, Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356130 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400129 A Robust Reception of IEEE 802.15.4a IR-TH UWB in Dense Multipath and Gaussian Noise
Authors: Farah Haroon, Haroon Rasheed, Kazi M Ahmed
Abstract:
IEEE 802.15.4a impulse radio-time hopping ultra wide band (IR-TH UWB) physical layer, due to small duty cycle and very short pulse widths is robust against multipath propagation. However, scattering and reflections with the large number of obstacles in indoor channel environments, give rise to dense multipath fading. It imposes serious problem to optimum Rake receiver architectures, for which very large number of fingers are needed. Presence of strong noise also affects the reception of fine pulses having extremely low power spectral density. A robust SRake receiver for IEEE 802.15.4a IRTH UWB in dense multipath and additive white Gaussian noise (AWGN) is proposed to efficiently recover the weak signals with much reduced complexity. It adaptively increases the signal to noise (SNR) by decreasing noise through a recursive least square (RLS) algorithm. For simulation, dense multipath environment of IEEE 802.15.4a industrial non line of sight (NLOS) is employed. The power delay profile (PDF) and the cumulative distribution function (CDF) for the respective channel environment are found. Moreover, the error performance of the proposed architecture is evaluated in comparison with conventional SRake and AWGN correlation receivers. The simulation results indicate a substantial performance improvement with very less number of Rake fingers.Keywords: Adaptive noise cancellation, dense multipath propoagation, IEEE 802.15.4a, IR-TH UWB, industrial NLOS environment, SRake receiver
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827128 Effect of Dynamic Stall, Finite Aspect Ratio and Streamtube Expansion on VAWT Performance Prediction using the BE-M Model
Authors: M. Raciti Castelli, A. Fedrigo, E. Benini
Abstract:
A multiple-option analytical model for the evaluation of the energy performance and distribution of aerodynamic forces acting on a vertical-axis Darrieus wind turbine depending on both rotor architecture and operating conditions is presented. For this purpose, a numerical algorithm, capable of generating the desired rotor conformation depending on design geometric parameters, is coupled to a Single/Double-Disk Multiple-Streamtube Blade Element – Momentum code. Both single and double-disk configurations are analyzed and model predictions are compared to literature experimental data in order to test the capability of the code for predicting rotor performance. Effective airfoil characteristics based on local blade Reynolds number are obtained through interpolation of literature low-Reynolds airfoil databases. Some corrections are introduced inside the original model with the aim of simulating also the effects of blade dynamic stall, rotor streamtube expansion and blade finite aspect ratio, for which a new empirical relationship to better fit the experimental data is proposed. In order to predict also open field rotor operation, a freestream wind shear profile is implemented, reproducing the effect of atmospheric boundary layer.
Keywords: Wind turbine, BE-M, dynamic stall, streamtube expansion, airfoil finite aspect ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25104127 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network
Authors: A.V.Naresh Babu, S.Sivanagaraju
Abstract:
A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196126 A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy
Authors: Hazem M. El-Bakry
Abstract:
In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.
Keywords: Hopfield Neural Networks, Cross Correlation, Nuclear Magnetic Resonance, Magnetic Resonance Spectroscopy, Fast Fourier Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845125 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati
Abstract:
Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540124 Decision Support System for Flood Crisis Management using Artificial Neural Network
Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi
Abstract:
This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.Keywords: Decision Support System, Neural Network, Flood Level
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626123 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network
Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain
Abstract:
This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.
Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 357122 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.
Keywords: Computer-aided system, detection, image segmentation, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544121 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography
Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi
Abstract:
Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.
Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618120 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299119 An Integrated Design Evaluation and Assembly Sequence Planning Model using a Particle Swarm Optimization Approach
Authors: Feng-Yi Huang, Yuan-Jye Tseng
Abstract:
In the traditional concept of product life cycle management, the activities of design, manufacturing, and assembly are performed in a sequential way. The drawback is that the considerations in design may contradict the considerations in manufacturing and assembly. The different designs of components can lead to different assembly sequences. Therefore, in some cases, a good design may result in a high cost in the downstream assembly activities. In this research, an integrated design evaluation and assembly sequence planning model is presented. Given a product requirement, there may be several design alternative cases to design the components for the same product. If a different design case is selected, the assembly sequence for constructing the product can be different. In this paper, first, the designed components are represented by using graph based models. The graph based models are transformed to assembly precedence constraints and assembly costs. A particle swarm optimization (PSO) approach is presented by encoding a particle using a position matrix defined by the design cases and the assembly sequences. The PSO algorithm simultaneously performs design evaluation and assembly sequence planning with an objective of minimizing the total assembly costs. As a result, the design cases and the assembly sequences can both be optimized. The main contribution lies in the new concept of integrated design evaluation and assembly sequence planning model and the new PSO solution method. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly planning problem. In this paper, an example product is tested and illustrated.
Keywords: assembly sequence planning, design evaluation, design for assembly, particle swarm optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827118 Qualitative Profiling in Practice: The Italian Public Employment Services Experience
Authors: L. Agneni, F. Carta, C. Micheletta, V. Tersigni
Abstract:
The development of a qualitative method to profile jobseekers is needed to improve the quality of the Public Employment Services (PES) in Italy. This is why the National Agency for Active Labour Market Policies (ANPAL) decided to introduce a Qualitative Profiling Service in the context of the activities carried out by local employment offices’ operators. The qualitative profiling service provides information and data regarding the jobseeker’s personal transition status, through a semi-structured questionnaire administered to PES clients during the guidance interview. The questionnaire responses allow PES staff to identify, for each client, proper activities and policy measures to support jobseekers in their reintegration into the labour market. Data and information gathered by the qualitative profiling tool are the following: frequency, modalities and motivations for clients to apply to local employment offices; clients’ expectations and skills; difficulties that they have faced during the previous working experiences; strategies, actions undertaken and activated channels for job search. These data are used to assess jobseekers’ personal and career characteristics and to measure their employability level (qualitative profiling index), in order to develop and deliver tailor-made action programmes for each client. This paper illustrates the use of the above-mentioned qualitative profiling service on the national territory and provides an overview of the main findings of the survey: concerning the difficulties that unemployed people face in finding a job and their perception of different aspects related to the transition in the labour market. The survey involved over 10.000 jobseekers registered with the PES. Most of them are beneficiaries of the “citizens' income”, a specific active labour policy and social inclusion measure. Furthermore, data analysis allows classifying jobseekers into a specific group of clients with similar features and behaviours, on the basis of socio-demographic variables, customers' expectations, needs and required skills for the profession for which they seek employment. Finally, the survey collects PES staff opinions and comments concerning clients’ difficulties in finding a new job and also their strengths. This is a starting point for PESs’ operators to define adequate strategies to facilitate jobseekers’ access or reintegration into the labour market.
Keywords: Labour market transition, Public Employment Services, qualitative profiling, vocational guidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590117 Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images
Authors: SP. Chokkalingam, K. Komathy
Abstract:
Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.
Keywords: Computer Aided Diagnosis, Edge Detection, Histogram Smoothing, Rheumatoid Arthritis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479116 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design
Authors: Emiliano Matta
Abstract:
Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.
Keywords: Amplitude-independent damping, Homogeneous friction, Pendulum nonlinear dynamics, Structural control, Vibration resonant absorbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731115 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications
Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber
Abstract:
Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.
Keywords: Classification, High dimensional data, Machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384114 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.
Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514