Search results for: Optimization techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4120

Search results for: Optimization techniques

400 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
399 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing

Authors: Sunil Patel, Pallab Maji

Abstract:

To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.

Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
398 Prioritising the TQM Enablers and IT Resources in the ICT Industry: An AHP Approach

Authors: Suby Khanam, Jamshed Siddiqui, Faisal Talib

Abstract:

Total Quality Management (TQM) is a managerial approach that improves the competitiveness of the industry, meanwhile Information technology (IT) was introduced with TQM for handling the technical issues which is supported by quality experts for fulfilling the customers’ requirement. Present paper aims to utilise AHP (Analytic Hierarchy Process) methodology to priorities and rank the hierarchy levels of TQM enablers and IT resource together for its successful implementation in the Information and Communication Technology (ICT) industry. A total of 17 TQM enablers (nine) and IT resources (eight) were identified and partitioned into 3 categories and were prioritised by AHP approach. The finding indicates that the 17 sub-criteria can be grouped into three main categories namely organizing, tools and techniques, and culture and people. Further, out of 17 sub-criteria, three sub-criteria: top management commitment and support, total employee involvement, and continuous improvement got highest priority whereas three sub-criteria such as structural equation modelling, culture change, and customer satisfaction got lowest priority. The result suggests a hierarchy model for ICT industry to prioritise the enablers and resources as well as to improve the TQM and IT performance in the ICT industry. This paper has some managerial implication which suggests the managers of ICT industry to implement TQM and IT together in their organizations to get maximum benefits and how to utilize available resources. At the end, conclusions, limitation, future scope of the study are presented.

Keywords: Analytic Hierarchy Process, Information Technology, Information and Communication Technology, Prioritization, Total Quality Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
397 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition

Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu

Abstract:

In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.

Keywords: Biometry, image processing, pattern recognition, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
396 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: Three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
395 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: Hole transporting layer, lead-free, perovskite Solar cell, SCAPS-1D, Sn-Ge based material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
394 Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution

Authors: P. Joyce Beryl Princess, Y. Harold Robinson

Abstract:

Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold.

Keywords: Image Processing, Inverse Discrete wavelet transform, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
393 FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity

Authors: Rafic Ayoubi, Jean-Pierre Dubois, Rania Minkara

Abstract:

In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.

Keywords: Femto-internet cells, field-programmable gate array, generalized maximal-ratio combining, Lyapunov fractal dimension, pipelining technique, wireless SIMO channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
392 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia

Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan

Abstract:

In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.

Keywords: Cushion coarse-grained sediments, expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
391 Suppression of Narrowband Interference in Impulse Radio Based High Data Rate UWB WPAN Communication System Using NLOS Channel Model

Authors: Bikramaditya Das, Susmita Das

Abstract:

Study on suppression of interference in time domain equalizers is attempted for high data rate impulse radio (IR) ultra wideband communication system. The narrow band systems may cause interference with UWB devices as it is having very low transmission power and the large bandwidth. SRAKE receiver improves system performance by equalizing signals from different paths. This enables the use of SRAKE receiver techniques in IRUWB systems. But Rake receiver alone fails to suppress narrowband interference (NBI). A hybrid SRake-MMSE time domain equalizer is proposed to overcome this by taking into account both the effect of the number of rake fingers and equalizer taps. It also combats intersymbol interference. A semi analytical approach and Monte-Carlo simulation are used to investigate the BER performance of SRAKEMMSE receiver on IEEE 802.15.3a UWB channel models. Study on non-line of sight indoor channel models (both CM3 and CM4) illustrates that bit error rate performance of SRake-MMSE receiver with NBI performs better than that of Rake receiver without NBI. We show that for a MMSE equalizer operating at high SNR-s the number of equalizer taps plays a more significant role in suppressing interference.

Keywords: IR-UWB, UWB, IEEE 802.15.3a, NBI, data rate, bit error rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
390 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
389 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants

Authors: Malinwo Estone Ayikpa

Abstract:

Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.

Keywords: Distribution system, losses, photovoltaic generation, primal-dual interior point method, reactive power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
388 Analytical Model Based Evaluation of Human Machine Interfaces Using Cognitive Modeling

Authors: Belkacem Chikhaoui, Helene Pigot

Abstract:

Cognitive models allow predicting some aspects of utility and usability of human machine interfaces (HMI), and simulating the interaction with these interfaces. The action of predicting is based on a task analysis, which investigates what a user is required to do in terms of actions and cognitive processes to achieve a task. Task analysis facilitates the understanding of the system-s functionalities. Cognitive models are part of the analytical approaches, that do not associate the users during the development process of the interface. This article presents a study about the evaluation of a human machine interaction with a contextual assistant-s interface using ACTR and GOMS cognitive models. The present work shows how these techniques may be applied in the evaluation of HMI, design and research by emphasizing firstly the task analysis and secondly the time execution of the task. In order to validate and support our results, an experimental study of user performance is conducted at the DOMUS laboratory, during the interaction with the contextual assistant-s interface. The results of our models show that the GOMS and ACT-R models give good and excellent predictions respectively of users performance at the task level, as well as the object level. Therefore, the simulated results are very close to the results obtained in the experimental study.

Keywords: HMI, interface evaluation, Analytical evaluation, cognitivemodeling, user modeling, user performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
387 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Geophysical Techniques

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil & condensate producer in Nigeria. Besides MPNU, other oil companies operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria. This study was designed to delineate oil polluted sites in Ibeno, Nigeria using geophysical methods of electrical resistivity (ER) and ground penetrating radar (GPR). Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from high resistivity values and GPR profiles which clearly show the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas and the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively confirmed significant recent pollution of the study area with crude oil.

Keywords: Electrical resistivity, geophysical investigations, ground penetrating radar, oil-polluted sites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3086
386 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: Artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
385 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications

Authors: Atef. A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab

Abstract:

Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronic color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to act as the main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam fixed at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works accurately under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.

Keywords: Robotics manipulator, 5-DOF manipulator, image processing, Color sorting, Pick-and-place.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
384 A Web Oriented Spread Spectrum Watermarking Procedure for MPEG-2 Videos

Authors: Franco Frattolillo

Abstract:

In the last decade digital watermarking procedures have become increasingly applied to implement the copyright protection of multimedia digital contents distributed on the Internet. To this end, it is worth noting that a lot of watermarking procedures for images and videos proposed in literature are based on spread spectrum techniques. However, some scepticism about the robustness and security of such watermarking procedures has arisen because of some documented attacks which claim to render the inserted watermarks undetectable. On the other hand, web content providers wish to exploit watermarking procedures characterized by flexible and efficient implementations and which can be easily integrated in their existing web services frameworks or platforms. This paper presents how a simple spread spectrum watermarking procedure for MPEG-2 videos can be modified to be exploited in web contexts. To this end, the proposed procedure has been made secure and robust against some well-known and dangerous attacks. Furthermore, its basic scheme has been optimized by making the insertion procedure adaptive with respect to the terminals used to open the videos and the network transactions carried out to deliver them to buyers. Finally, two different implementations of the procedure have been developed: the former is a high performance parallel implementation, whereas the latter is a portable Java and XML based implementation. Thus, the paper demonstrates that a simple spread spectrum watermarking procedure, with limited and appropriate modifications to the embedding scheme, can still represent a valid alternative to many other well-known and more recent watermarking procedures proposed in literature.

Keywords: Copyright protection, digital watermarking, intellectual property protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
383 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems

Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy

Abstract:

This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.

Keywords: Line congestion index, critical bus, contingency, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
382 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
381 Reduction of Power Losses in Distribution Systems

Authors: Y. Al-Mahroqi, I.A. Metwally, A. Al-Hinai, A. Al-Badi

Abstract:

Losses reduction initiatives in distribution systems have been activated due to the increasing cost of supplying electricity, the shortage in fuel with ever-increasing cost to produce more power, and the global warming concerns. These initiatives have been introduced to the utilities in shape of incentives and penalties. Recently, the electricity distribution companies in Oman have been incentivized to reduce the distribution technical and non-technical losses with an equal annual reduction rate for 6 years. In this paper, different techniques for losses reduction in Mazoon Electricity Company (MZEC) are addressed. In this company, high numbers of substation and feeders were found to be non-compliant with the Distribution System Security Standard (DSSS). Therefore, 33 projects have been suggested to bring non-complying 29 substations and 28 feeders to meet the planed criteria and to comply with the DSSS. The largest part of MZEC-s network (South Batinah region) was modeled by ETAP software package. The model has been extended to implement the proposed projects and to examine their effects on losses reduction. Simulation results have shown that the implementation of these projects leads to a significant improvement in voltage profile, and reduction in the active and the reactive power losses. Finally, the economical analysis has revealed that the implementation of the proposed projects in MZEC leads to an annual saving of about US$ 5 million.

Keywords: Losses Reduction, Technical Losses, Non-Technical Losses, Cost Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9370
380 Intelligent Path Planning for Rescue Robot

Authors: Sohrab Khanmohammadi, Raana Soltani Zarrin

Abstract:

In this paper, a heuristic method for simultaneous rescue robot path-planning and mission scheduling is introduced based on project management techniques, multi criteria decision making and artificial potential fields path-planning. Groups of injured people are trapped in a disastrous situation. These people are categorized into several groups based on the severity of their situation. A rescue robot, whose ultimate objective is reaching injured groups and providing preliminary aid for them through a path with minimum risk, has to perform certain tasks on its way towards targets before the arrival of rescue team. A decision value is assigned to each target based on the whole degree of satisfaction of the criteria and duties of the robot toward the target and the importance of rescuing each target based on their category and the number of injured people. The resulted decision value defines the strength of the attractive potential field of each target. Dangerous environmental parameters are defined as obstacles whose risk determines the strength of the repulsive potential field of each obstacle. Moreover, negative and positive energies are assigned to the targets and obstacles, which are variable with respects to the factors involved. The simulation results show that the generated path for two cases studies with certain differences in environmental conditions and other risk factors differ considerably.

Keywords: Artificial potential field, GERT, path planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
379 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control

Authors: Rami N. Khushaba, Adel Al-Jumaily

Abstract:

The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.

Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
378 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
377 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method

Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar

Abstract:

In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.

Keywords: Stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
376 Identification of Most Frequently Occurring Lexis in Body-enhancement Medicinal Unsolicited Bulk e-mails

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

e-mail has become an important means of electronic communication but the viability of its usage is marred by Unsolicited Bulk e-mail (UBE) messages. UBE consists of many types like pornographic, virus infected and 'cry-for-help' messages as well as fake and fraudulent offers for jobs, winnings and medicines. UBE poses technical and socio-economic challenges to usage of e-mails. To meet this challenge and combat this menace, we need to understand UBE. Towards this end, the current paper presents a content-based textual analysis of more than 2700 body enhancement medicinal UBE. Technically, this is an application of Text Parsing and Tokenization for an un-structured textual document and we approach it using Bag Of Words (BOW) and Vector Space Document Model techniques. We have attempted to identify the most frequently occurring lexis in the UBE documents that advertise various products for body enhancement. The analysis of such top 100 lexis is also presented. We exhibit the relationship between occurrence of a word from the identified lexis-set in the given UBE and the probability that the given UBE will be the one advertising for fake medicinal product. To the best of our knowledge and survey of related literature, this is the first formal attempt for identification of most frequently occurring lexis in such UBE by its textual analysis. Finally, this is a sincere attempt to bring about alertness against and mitigate the threat of such luring but fake UBE.

Keywords: Body Enhancement, Lexis, Medicinal, Unsolicited Bulk e-mail (UBE), Vector Space Document Model, Viagra

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3508
375 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
374 Mathematical Analysis of EEG of Patients with Non-fatal Nonspecific Diffuse Encephalitis

Authors: Mukesh Doble, Sunil K Narayan

Abstract:

Diffuse viral encephalitis may lack fever and other cardinal signs of infection and hence its distinction from other acute encephalopathic illnesses is challenging. Often, the EEG changes seen routinely are nonspecific and reflect diffuse encephalopathic changes only. The aim of this study was to use nonlinear dynamic mathematical techniques for analyzing the EEG data in order to look for any characteristic diagnostic patterns in diffuse forms of encephalitis.It was diagnosed on clinical, imaging and cerebrospinal fluid criteria in three young male patients. Metabolic and toxic encephalopathies were ruled out through appropriate investigations. Digital EEGs were done on the 3rd to 5th day of onset. The digital EEGs of 5 male and 5 female age and sex matched healthy volunteers served as controls.Two sample t-test indicated that there was no statistically significant difference between the average values in amplitude between the two groups. However, the standard deviation (or variance) of the EEG signals at FP1-F7 and FP2-F8 are significantly higher for the patients than the normal subjects. The regularisation dimension is significantly less for the patients (average between 1.24-1.43) when compared to the normal persons (average between 1.41-1.63) for the EEG signals from all locations except for the Fz-Cz signal. Similarly the wavelet dimension is significantly less (P = 0.05*) for the patients (1.122) when compared to the normal person (1.458). EEGs are subdued in the case of the patients with presence of uniform patterns, manifested in the values of regularisation and wavelet dimensions, when compared to the normal person, indicating a decrease in chaotic nature.

Keywords: Chaos, Diffuse encephalitis, Electroencephalogram, Fractal dimension, Fourier spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
373 Managing the Architectural Heritage of Tripoli, Libya: Case Study of the Red Castle

Authors: Eman Mohamed Ali Elalwani, Salah Haj Ismail

Abstract:

The Libyan heritage buildings are currently facing a number of crises that pose a threat to their structural integrity, functionality, and overall performance. One of the challenges pertains to the loss of community identity, which has arisen due to the lack of awareness and unconscious behavior of the residents. An additional issue arises from inadequate site management practices, including the implementation of modern techniques and innovative building materials that are incompatible with structural elements, resulting in the deformation of certain sections of the buildings. The security concerns of the city, along with the ongoing civil conflict, fostered a conducive environment for violations, resulting in the vandalism of certain monuments in the city. However, the degradation of this valuable heritage is mainly attributed to the city's neglect and pollution. The elevated groundwater level resulting from pollution has led to erosion in the building's foundations. Mitigating these negative consequences through strategic interventions and rehabilitation is required to preserve this treasure. In order to assist the local community in recovering from those crises, this paper stated a viable strategy for promoting preservation efforts that aimed at safeguarding the heritage sites while also providing guidance to decision-makers and the local community on how to avoid these crises, preserve, enhance, and recognize the significance of the Libyan heritage.

Keywords: Cultural heritage, historical buildings, Tripoli’s Old City, Red Castle, crises, preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31
372 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording

Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy

Abstract:

Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.

Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
371 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731