Search results for: simulation optimization
1289 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory
Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov
Abstract:
The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.Keywords: Arbitrary cross section waveguide, analytical regularization method, evolutionary equations of electromagnetic theory of time-domain, TM field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761288 Subthreshold Circuit Performance Investigation under Temperature Variations
Authors: Mohd. Hasan, Ajmal Kafeel, S. D. Pable
Abstract:
Ultra-low-power (ULP) circuits have received widespread attention due to the rapid growth of biomedical applications and Battery-less Electronics. Subthreshold region of transistor operation is used in ULP circuits. Major research challenge in the subthreshold operating region is to extract the ULP benefits with minimal degradation in speed and robustness. Process, Voltage and Temperature (PVT) variations significantly affect the performance of subthreshold circuits. Designed performance parameters of ULP circuits may vary largely due to temperature variations. Hence, this paper investigates the effect of temperature variation on device and circuit performance parameters at different biasing voltages in the subthreshold region. Simulation results clearly demonstrate that in deep subthreshold and near threshold voltage regions, performance parameters are significantly affected whereas in moderate subthreshold region, subthreshold circuits are more immune to temperature variations. This establishes that moderate subthreshold region is ideal for temperature immune circuits.Keywords: Subthreshold, temperature variations, ultralow power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23091287 Improvement of Ride Comfort of Turning Electric Vehicle Using Optimal Speed Control
Authors: Yingyi Zhou, Tohru Kawabe
Abstract:
With the spread of EVs (electric Vehicles), the ride comfort has been gaining a lot of attention. The influence of the lateral acceleration is important for the improvement of ride comfort of EVs as well as the longitudinal acceleration, especially upon turning of the vehicle. Therefore, this paper proposes a practical optimal speed control method to greatly improve the ride comfort in the vehicle turning situation. For consturcting this method, effective criteria that can appropriately evaluate deterioration of ride comfort is derived. The method can reduce the influence of both the longitudinal and the lateral speed changes for providing a confortable ride. From several simulation results, we can see the fact that the method can prevent aggravation of the ride comfort by suppressing the influence of longitudinal speed change in the turning situation. Hence, the effectiveness of the method is recognized.Keywords: Electric vehicle, speed control, ride comfort, optimal control theory, driving support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9191286 Entropy Based Spatial Design: A Genetic Algorithm Approach (Case Study)
Authors: Abbas Siefi, Mohammad Javad Karimifar
Abstract:
We study the spatial design of experiment and we want to select a most informative subset, having prespecified size, from a set of correlated random variables. The problem arises in many applied domains, such as meteorology, environmental statistics, and statistical geology. In these applications, observations can be collected at different locations and possibly at different times. In spatial design, when the design region and the set of interest are discrete then the covariance matrix completely describe any objective function and our goal is to choose a feasible design that minimizes the resulting uncertainty. The problem is recast as that of maximizing the determinant of the covariance matrix of the chosen subset. This problem is NP-hard. For using these designs in computer experiments, in many cases, the design space is very large and it's not possible to calculate the exact optimal solution. Heuristic optimization methods can discover efficient experiment designs in situations where traditional designs cannot be applied, exchange methods are ineffective and exact solution not possible. We developed a GA algorithm to take advantage of the exploratory power of this algorithm. The successful application of this method is demonstrated in large design space. We consider a real case of design of experiment. In our problem, design space is very large and for solving the problem, we used proposed GA algorithm.
Keywords: Spatial design of experiments, maximum entropy sampling, computer experiments, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601285 Behavioral Study of TCSC Device – A MATLAB/Simulink Implementation
Authors: S. Meikandasivam, Rajesh Kumar Nema, Shailendra Kumar Jain
Abstract:
A basic conceptual study of TCSC device on Simulink is a teaching aid and helps in understanding the rudiments of the topic. This paper thus stems out from basics of TCSC device and analyzes the impedance characteristics and associated single & multi resonance conditions. The Impedance characteristics curve is drawn for different values of inductance in MATLAB using M-files. The study is also helpful in estimating the appropriate inductance and capacitance values which have influence on multi resonance point in TCSC device. The capacitor voltage, line current, thyristor current and capacitor current waveforms are discussed briefly as simulation results. Simulink model of TCSC device is given and corresponding waveforms are analyzed. The subsidiary topics e.g. power oscillation damping, SSR mitigation and transient stability is also brought out.
Keywords: TCSC device, Impedance characteristics, Resonance point, Simulink model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54491284 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage
Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao
Abstract:
Particles exhausted from cars have adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.
Keywords: Dispersion, Idling conditions, Particle concentration, Residential underground garage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19831283 Molecular Dynamics Simulation of Lubricant Adsorption and Thermal Depletion Instability
Authors: Bei Li, Qiu B. Chen, Chee H. Wong
Abstract:
In this work, we incorporated a quartic bond potential into a coarse-grained bead-spring model to study lubricant adsorption on a solid surface as well as depletion instability. The surface tension density and the number density profiles were examined to verify the solid-liquid and liquid-vapor interfaces during heat treatment. It was found that both the liquid-vapor interfacial thickness and the solid-vapor separation increase with the temperatureT* when T*is below the phase transition temperature Tc *. At high temperatures (T*>Tc *), the solid-vapor separation decreases gradually as the temperature increases. In addition, we evaluated the lubricant weight and bond loss profiles at different temperatures. It was observed that the lubricant desorption is favored over decomposition and is the main cause of the lubricant failure at the head disk interface in our simulations.Keywords: Depletion instability, Lubricant film, Thermal adsorption, Molecular dynamics (MD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17711282 Fuzzy Logic Controlled Shunt Active Power Filter for Three-phase Four-wire Systems with Balanced and Unbalanced Loads
Authors: Ahmed A. Helal, Nahla E. Zakzouk, Yasser G. Desouky
Abstract:
This paper presents a fuzzy logic controlled shunt active power filter used to compensate for harmonic distortion in three-phase four-wire systems. The shunt active filter employs a simple method for the calculation of the reference compensation current based of Fast Fourier Transform. This presented filter is able to operate in both balanced and unbalanced load conditions. A fuzzy logic based current controller strategy is used to regulate the filter current and hence ensure harmonic free supply current. The validity of the presented approach in harmonic mitigation is verified via simulation results of the proposed test system under different loading conditions.Keywords: Active power filters, Fuzzy logic controller, Power quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19941281 Nonlinear Optimal Line-Of-Sight Stabilization with Fuzzy Gain-Scheduling
Authors: A. Puras Trueba, J. R. Llata García
Abstract:
A nonlinear optimal controller with a fuzzy gain scheduler has been designed and applied to a Line-Of-Sight (LOS) stabilization system. Use of Linear Quadratic Regulator (LQR) theory is an optimal and simple manner of solving many control engineering problems. However, this method cannot be utilized directly for multigimbal LOS systems since they are nonlinear in nature. To adapt LQ controllers to nonlinear systems at least a linearization of the model plant is required. When the linearized model is only valid within the vicinity of an operating point a gain scheduler is required. Therefore, a Takagi-Sugeno Fuzzy Inference System gain scheduler has been implemented, which keeps the asymptotic stability performance provided by the optimal feedback gain approach. The simulation results illustrate that the proposed controller is capable of overcoming disturbances and maintaining a satisfactory tracking performance.Keywords: Fuzzy Gain-Scheduling, Gimbal, Line-Of-SightStabilization, LQR, Optimal Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23301280 The Effect of Choke on the Efficiency of Coaxial Antenna for Percutaneous Microwave Coagulation Therapy for Hepatic Tumor
Authors: Surita Maini
Abstract:
There are many perceived advantages of microwave ablation have driven researchers to develop innovative antennas to effectively treat deep-seated, non-resectable hepatic tumors. In this paper a coaxial antenna with a miniaturized sleeve choke has been discussed for microwave interstitial ablation therapy, in order to reduce backward heating effects irrespective of the insertion depth into the tissue. Two dimensional Finite Element Method (FEM) is used to simulate and measure the results of miniaturized sleeve choke antenna. This paper emphasizes the importance of factors that can affect simulation accuracy, which include mesh resolution, surface heating and reflection coefficient. Quarter wavelength choke effectiveness has been discussed by comparing it with the unchoked antenna with same dimensions.Keywords: Microwave ablation, tumor, Finite Element Method, Coaxial slot antenna, Coaxial dipole antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26121279 The Application of Adaptive Tabu Search Algorithm and Averaging Model to the Optimal Controller Design of Buck Converters
Authors: T. Sopapirm, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents the applications of artificial intelligence technique called adaptive tabu search to design the controller of a buck converter. The averaging model derived from the DQ and generalized state-space averaging methods is applied to simulate the system during a searching process. The simulations using such averaging model require the faster computational time compared with that of the full topology model from the software packages. The reported model is suitable for the work in the paper in which the repeating calculation is needed for searching the best solution. The results will show that the proposed design technique can provide the better output waveforms compared with those designed from the classical method.Keywords: Buck converter, adaptive tabu search, DQ method, generalized state-space averaging method, modeling and simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18431278 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Nikos Mastorakis
Abstract:
Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20691277 Negative Emotions and Ways of Overcoming them in Prison
Authors: Katarzyna Czubak
Abstract:
The aim of this paper is description of the notion of the death for prisoners and the ways of deal with. They express indifference, coldness, inability to accept the blame, they have no shame and no empathy. Is it enough to perform acts verging on the death. In this paper we described mechanisms and regularities of selfdestructive behaviour in the view of the relevant literature? The explanation of the phenomenon is of a biological and sociopsychological nature. It must be clearly stated that all forms of selfdestructive behaviour result from various impulses, conflicts and deficits. That is why they should be treated differently in terms of motivation and functions which they perform in a given group of people. Behind self-destruction there seems to be a motivational mechanism which forces prisoners to rebel and fight against the hated law and penitentiary systems. The imprisoned believe that pain and suffering inflicted on them by themselves are better than passive acceptance of repression. The variety of self-destruction acts is wide, and some of them take strange forms. We assume that a life-death barrier is a kind of game for them. If they cannot change the degrading situation, their life loses sense.Keywords: Self- destruction, Simulation, Negative emotions, Consequences of conviction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14891276 Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number
Authors: A. Nourbakhsh
Abstract:
A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the centerline (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the centerline. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow.
Keywords: Suspensions, Poiseuille flow, Effective viscosity, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19161275 FEM Analysis of the Interaction between a Piezoresistive Tactile Sensor and Biological Tissues
Authors: Ahmad Atieh, Masoud Kalantari, Roozbeh Ahmadi, Javad Dargahi, Muthukumaran Packirisamy, Mehrdad Hosseini Zadeh
Abstract:
The present paper presents a finite element model and analysis for the interaction between a piezoresistive tactile sensor and biological tissues. The tactile sensor is proposed for use in minimally invasive surgery to deliver tactile information of biological tissues to surgeons. The proposed sensor measures the relative hardness of soft contact objects as well as the contact force. Silicone rubbers were used as the phantom of biological tissues. Finite element analysis of the silicone rubbers and the mechanical structure of the sensor were performed using COMSOL Multiphysics (v3.4) environment. The simulation results verify the capability of the sensor to be used to differentiate between different kinds of silicone rubber materials.Keywords: finite element analysis, minimally invasive surgery, Neo-Hookean hyperelastic materials, tactile sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27631274 An AR/VR Based Approach Towards the Intuitive Control of Mobile Rescue Robots
Authors: Jürgen Roßmann, André Kupetz, Roland Wischnewski
Abstract:
An intuitive user interface for the teleoperation of mobile rescue robots is one key feature for a successful exploration of inaccessible and no-go areas. Therefore, we have developed a novel framework to embed a flexible and modular user interface into a complete 3-D virtual reality simulation system. Our approach is based on a client-server architecture to allow for a collaborative control of the rescue robot together with multiple clients on demand. Further, it is important that the user interface is not restricted to any specific type of mobile robot. Therefore, our flexible approach allows for the operation of different robot types with a consistent concept and user interface. In laboratory tests, we have evaluated the validity and effectiveness of our approach with the help of two different robot platforms and several input devices. As a result, an untrained person can intuitively teleoperate both robots without needing a familiarization time when changing the operating robot.
Keywords: Teleoperation of mobile robots, augmented reality, user interface, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18481273 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18071272 An Interference Reduction Strategy for TDD-OFDMA Cellular Systems
Authors: Koudjo M. Koumadi, Kester Quist-Aphetsi, Robert A. Sowah, Amevi Acakpovi
Abstract:
Downlink/Uplink (DL/UL) time slot allocation (TSA) in time division duplex (TDD) systems is generally uniform for all the cells. This TSA however is not efficient in case of different traffic asymmetry ratios in different cells. We first propose a new 3-coordinate architecture to identify cells in an orthogonal frequency division multiple access (OFDMA) system where each cell is divided into three sectors. Then, this coordinate system is used to derive a TSA for symmetric traffic. Mathematical analysis and simulations are used to show that the proposed TSA outperforms the traditional all uniform type of TSA in terms of total intercellular interference, even under uniform symmetrical traffic. Two adaptation strategies are further proposed to adjust the proposed TSA to asymmetrical traffic with different DL/UL traffic ratios in different cells. Further simulation results show that the adaptation strategies also yield higher signal-to-interference ratio (SIR).
Keywords: Crossed TSA, different-entity interference, same-entity interference, uniform TSA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22311271 Double Loop Control of H-Bridge DC Chopper Fed Permanent Magnet DC Motor Drives Using Low Cost Hardware
Authors: Zin Maw Tun, Tun Lin Naing
Abstract:
This paper presents the two loop proportional integral (PI) controller for speed control of permanent magnet DC motor (PMDC) motor drive with H-bridge DC chopper. PMDC motors are widely used in many applications because of having a good performance and it is easy to apply the speed control. The speed can be adjusted by using armature voltage control as it had only the armature circuit. H-bridge DC chopper circuit is used to obtain the desired speed in any direction. In this system, the two loop PI controller is designed by using pole-zero cancellation method. The speed and current controller gains are considered depending on the sampling frequency of the microcontroller. An Arduino IO package is used to implement the control algorithm. Both simulation and experimental results are presented to prove the correctness of the mathematical model.Keywords: Arduino IO package, double loop PI controller, H-bridge DC chopper, low cost hardware, PMDC motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8221270 An Impulse-Momentum Approach to Swing-Up Control of Double Inverted Pendulum on a Cart
Authors: Thamer Ali Albahkali
Abstract:
The challenge in the swing-up problem of double inverted pendulum on a cart (DIPC) is to design a controller that bring all DIPC's states, especially the joint angles of the two links, into the region of attraction of the desired equilibrium. This paper proposes a new method to swing-up DIPC based on a series of restto- rest maneuvers of the first link about its vertically upright configuration while holding the cart fixed at the origin. The rest-torest maneuvers are designed such that each one results in a net gain in energy of the second link. This results in swing-up of DIPC-s configuration to the region of attraction of the desired equilibrium. A three-step algorithm is provided for swing-up control followed by the stabilization step. Simulation results with a comparison to an experimental work done in the literature are presented to demonstrate the efficacy of the approach.Keywords: Double Inverted pendulum, Impulse, momentum, underactuated
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19421269 Rotorcraft Performance and Environmental Impact Evaluation by Multidisciplinary Modelling
Authors: Pierre-Marie Basset, Gabriel Reboul, Binh DangVu, Sébastien Mercier
Abstract:
Rotorcraft provides invaluable services thanks to their Vertical Take-Off and Landing (VTOL), hover and low speed capabilities. Yet their use is still often limited by their cost and environmental impact, especially noise and energy consumption. One of the main brakes to the expansion of the use of rotorcraft for urban missions is the environmental impact. The first main concern for the population is the noise. In order to develop the transversal competency to assess the rotorcraft environmental footprint, a collaboration has been launched between six research departments within ONERA. The progress in terms of models and methods are capitalized into the numerical workshop C.R.E.A.T.I.O.N. “Concepts of Rotorcraft Enhanced Assessment Through Integrated Optimization Network”. A typical mission for which the environmental impact issue is of great relevance has been defined. The first milestone is to perform the pre-sizing of a reference helicopter for this mission. In a second milestone, an alternate rotorcraft concept has been defined: a tandem rotorcraft with optional propulsion. The key design trends are given for the pre-sizing of this rotorcraft aiming at a significant reduction of the global environmental impact while still giving equivalent flight performance and safety with respect to the reference helicopter. The models and methods have been improved for catching sooner and more globally, the relative variations on the environmental impact when changing the rotorcraft architecture, the pre-design variables and the operation parameters.Keywords: Environmental impact, flight performance, helicopter, rotorcraft pre-sizing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001268 Robust Coherent Noise Suppression by Point Estimation of the Cauchy Location Parameter
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
This paper introduces a new point estimation algorithm, with particular focus on coherent noise suppression, given several measurements of the device under test where it is assumed that 1) the noise is first-order stationery and 2) the device under test is linear and time-invariant. The algorithm exploits the robustness of the Pitman estimator of the Cauchy location parameter through the initial scaling of the test signal by a centred Gaussian variable of predetermined variance. It is illustrated through mathematical derivations and simulation results that the proposed algorithm is more accurate and consistently robust to outliers for different tailed density functions than the conventional methods of sample mean (coherent averaging technique) and sample median search.
Keywords: Central limit theorem, Fisher-Cramer Rao, gamma function, Pitman estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19241267 Control and Simulation of FOPDT Food Processes with Constraints using PI Controller
Authors: M.Y. Pua, M.C. Tan, L.W. Tan, N. Ab.Aziz, F.S. Taip
Abstract:
The most common type of controller being used in the industry is PI(D) controller which has been used since 1945 and is still being widely used due to its efficiency and simplicity. In most cases, the PI(D) controller was tuned without taking into consideration of the effect of actuator saturation. In real processes, the most common actuator which is valve will act as constraint and restrict the controller output. Since the controller is not designed to encounter saturation, the process may windup and consequently resulted in large oscillation or may become unstable. Usually, an antiwindup compensator is added to the feedback control loop to reduce the deterioration effect of integral windup. This research aims to specifically control processes with constraints. The proposed method was applied to two different types of food processes, which are blending and spray drying. Simulations were done using MATLAB and the performances of the proposed method were compared with other conventional methods. The proposed technique was able to control the processes and avoid saturation such that no anti windup compensator is needed.Keywords: constraints, food process control, first order plusdead time process, PI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621266 Performance Evaluation of an Efficient Asynchronous Protocol for WDM Ring MANs
Authors: Peristera A. Baziana
Abstract:
The idea of the asynchronous transmission in wavelength division multiplexing (WDM) ring MANs is studied in this paper. Especially, we present an efficient access technique to coordinate the collisions-free transmission of the variable sizes of IP traffic in WDM ring core networks. Each node is equipped with a tunable transmitter and a tunable receiver. In this way, all the wavelengths are exploited for both transmission and reception. In order to evaluate the performance measures of average throughput, queuing delay and packet dropping probability at the buffers, a simulation model that assumes symmetric access rights among the nodes is developed based on Poisson statistics. Extensive numerical results show that the proposed protocol achieves apart from high bandwidth exploitation for a wide range of offered load, fairness of queuing delay and dropping events among the different packets size categories.
Keywords: Asynchronous transmission, collision avoidance, wavelength division multiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20941265 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach
Authors: Abdallah Al-Shammari
Abstract:
This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solutionKeywords: Linear programming, Petrochemicals, stability analysis, uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19561264 Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone
Authors: Ibrahim F. Jasim
Abstract:
This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.
Keywords: Dead Zone, Nonlinear Systems, Observer, Robust Adaptive Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17141263 Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels
Authors: Xuan Sun, Mingbo Tong
Abstract:
To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.
Keywords: Stiffened, Low-velocity, Impact, Abaqus, Impact Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25251262 Design and Implementation of Quantum Cellular Automata Based Novel Adder Circuits
Authors: Santanu Santra, Utpal Roy
Abstract:
The most important mathematical operation for any computing system is addition. An efficient adder can be of greater assistance in designing of any arithmetic circuits. Quantum-dot Cellular Automata (QCA) is a promising nanotechnology to create electronic circuits for computing devices and suitable candidate for next generation of computing systems. The article presents a modest approach to implement a novel XOR gate. The gate is simple in structure and powerful in terms of implementing digital circuits. By applying the XOR gate, the hardware requirement for a QCA circuit can be decrease and circuits can be simpler in level, clock phase and cell count. In order to verify the functionality of the proposed device some implementation of Half Adder (HA) and Full Adder (FA) is checked by means of computer simulations using QCA-Designer tool. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.
Keywords: Clock, Computing system, Majority gate, QCA, QCA Designer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44551261 A Dose Distribution Approach Using Monte Carlo Simulation in Dosimetric Accuracy Calculation for Treating the Lung Tumor
Authors: Md Abdullah Al Mashud, M. Tariquzzaman, M. Jahangir Alam, Tapan Kumar Godder, M. Mahbubur Rahman
Abstract:
This paper presents a Monte Carlo (MC) method-based dose distributions on lung tumor for 6 MV photon beam to improve the dosimetric accuracy for cancer treatment. The polystyrene which is tissue equivalent material to the lung tumor density is used in this research. In the empirical calculations, TRS-398 formalism of IAEA has been used, and the setup was made according to the ICRU recommendations. The research outcomes were compared with the state-of-the-art experimental results. From the experimental results, it is observed that the proposed based approach provides more accurate results and improves the accuracy than the existing approaches. The average %variation between measured and TPS simulated values was obtained 1.337±0.531, which shows a substantial improvement comparing with the state-of-the-art technology.
Keywords: Lung tumor, Monte Carlo, polystyrene, elekta synergy, Monaco Planning System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12471260 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976