Search results for: knowledge transference.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1896

Search results for: knowledge transference.

1566 Experimental Film Class: Watbangkapom School, Samut Songkhram

Authors: Areerut J.

Abstract:

Experimental Film Class Project is supported by the Institute for Research and Development at Suan Sunandha Rajabhat University. This project is purported to provide academic and professional services to improve the quality standards of the community and locals in accordance with the mission of the university, which is to improve and expand knowledge for the community and to develop and transfer such knowledge and professions to the next generation. Eventually, it leads to sustainable development because the development of human resources is deemed as the key for sustainable development. Moreover, the Experimental Film Class is an integral part of the teaching of film production at Suan Sunandha International School of Art (SISA). By means of giving opportunities to students for participation in projects by sharing experience, skill and knowledge and participation in field activities, it helps students in the film production major to enhance their abilities and potentials as preparation for their readiness in the marketplace. Additionally, in this class, we provide basic film knowledge, screenwriting techniques, editing and subtitles including uploading videos on social media such as YouTube and Facebook for the participant students.

Keywords: Experimental Film Class, Watbangkapom School, Participant students, Basic of film production, Film Workshop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
1565 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region

Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang

Abstract:

This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.

Keywords: Mobile learning, e-learning, crossword, ASEAN, iSEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1564 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
1563 Target Concept Selection by Property Overlap in Ontology Population

Authors: Seong-Bae Park, Sang-Soo Kim, Sewook Oh, Zooyl Zeong, Hojin Lee, Seong Rae Park

Abstract:

An ontology is widely used in many kinds of applications as a knowledge representation tool for domain knowledge. However, even though an ontology schema is well prepared by domain experts, it is tedious and cost-intensive to add instances into the ontology. The most confident and trust-worthy way to add instances into the ontology is to gather instances from tables in the related Web pages. In automatic populating of instances, the primary task is to find the most proper concept among all possible concepts within the ontology for a given table. This paper proposes a novel method for this problem by defining the similarity between the table and the concept using the overlap of their properties. According to a series of experiments, the proposed method achieves 76.98% of accuracy. This implies that the proposed method is a plausible way for automatic ontology population from Web tables.

Keywords: Ontology population, domain knowledge consolidation, target concept selection, property overlap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1562 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor

Authors: R. Mechgoug, A. Titaouine

Abstract:

Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.

Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
1561 The Effects of Knowledge Management on Human Capital towards Organizational Innovation

Authors: Wan Norhayate Wan Daud, Fakhrul Anwar Zainol, Maslina Mansor

Abstract:

The study was conducted to produce case studies from the Malaysian public universities stands point East Coast of Malaysia. The aim of this study is to analyze the effects of knowledge management on human capital toward organizational innovation. The focus point of this study is on the management member in the faculties of these three Malaysian Public Universities in the East Coast state of Peninsular Malaysia. In this case, respondents who agreed to further participate in the research will be invited to a one-hour face-to-face semi-structured, in-depth interview. As a result, the sample size for this study was 3 deans of Faculty of Management. Lastly, this study tries to recommend the framework of organizational innovation in Malaysian Public Universities.

Keywords: Human Capital, Knowledge Management, Organizational Innovation, Public University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3331
1560 Variable Rough Set Model and Its Knowledge Reduction for Incomplete and Fuzzy Decision Information Systems

Authors: Da-kuan Wei, Xian-zhong Zhou, Dong-jun Xin, Zhi-wei Chen

Abstract:

The information systems with incomplete attribute values and fuzzy decisions commonly exist in practical problems. On the base of the notion of variable precision rough set model for incomplete information system and the rough set model for incomplete and fuzzy decision information system, the variable rough set model for incomplete and fuzzy decision information system is constructed, which is the generalization of the variable precision rough set model for incomplete information system and that of rough set model for incomplete and fuzzy decision information system. The knowledge reduction and heuristic algorithm, built on the method and theory of precision reduction, are proposed.

Keywords: Rough set, Incomplete and fuzzy decision information system, Limited valued tolerance relation, Knowledge reduction, Variable rough set model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1559 Organizational Decision Based on Business Intelligence

Authors: Pejman Hosseinioun, Rose Shayeghi, Ghasem Ghorbani Rostam

Abstract:

Nowadays, obtaining traditional statistics and reports is not adequate for the needs of organizational managers. The managers need to analyze and to transform the raw data into knowledge in the world filled with information. Therefore in this regard various processes have been developed. In the meantime the artificial intelligence-based processes are used and the new topics such as business intelligence and knowledge discovery have emerged. In the current paper it is sought to study the business intelligence and its applications in the organizations.

Keywords: Business intelligence, business intelligence infrastructures, business processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
1558 M2LGP: Mining Multiple Level Gradual Patterns

Authors: Yogi Satrya Aryadinata, Anne Laurent, Michel Sala

Abstract:

Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.

Keywords: Gradual Pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
1557 Patterns of Sports Supplement Use among Iranian Female Athletes

Authors: A. Golshanraz, L. Hakemi, L. Pourkazemi, E. Dadgostar, F. Moradzandi, R. Tabatabaee, F. Moradi, K. Hosseinihajiagha, N. Jazayeri, H. Abedifar, R. Fouladi, M. Khooban, H. Saboori, M. Kiani, M. Sajedi, E. Karooninejad, S.Moeen, M.Ghavam, F.Beiranvand, S.Mansoori, F.Gheisari, H.Barzegari

Abstract:

Supplement use is common in athletes. Besides their cost, they may have side effects on health and performance. 250 questionnaires were distributed among female athletes (mean age 27.08 years). The questionnaire aimed to explore the frequency, type, believes, attitudes and knowledge regarding dietary supplements. Knowledge was good in 30.3%, fair in 60.2%, and poor in 9.1% of respondents. 65.3% of athletes did not use supplements regularly. The most widely used supplements were vitamins (48.4%), minerals (42.9%), energy supplements (21.3%), and herbals (20.9%). 68.9% of athletes believed in their efficacy. 34.4% experienced performance enhancement and 6.8% of reported side effects. 68.2% reported little knowledge and 60.9% were eager to learn more. In conclusion, many of the female athletes believe in the efficacy of supplements and think they are an unavoidable part of competitive sports. However, their information is not sufficient. We have to stress on education, consulting sessions, and rational prescription.

Keywords: athlete, female, sports, supplement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1556 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: Distributed control, game theory, multi-agent learning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
1555 A Literature Review on the Effect of Industrial Clusters and the Absorptive Capacity on Innovation

Authors: Enrique Claver Cortés, Bartolomé Marco Lajara, Eduardo Sánchez García, Pedro Seva Larrosa, Encarnación Manresa Marhuenda, Lorena Ruiz Fernández, Esther Poveda Pareja

Abstract:

In recent decades, the analysis of the effects of clustering as an essential factor for the development of innovations and the competitiveness of enterprises has raised great interest in different areas. Nowadays, companies have access to almost all tangible and intangible resources located and/or developed in any country in the world. However, despite the obvious advantages that this situation entails for companies, their geographical location has shown itself, increasingly clearly, to be a fundamental factor that positively influences their innovative performance and competitiveness. Industrial clusters could represent a unique level of analysis, positioned between the individual company and the industry, which makes them an ideal unit of analysis to determine the effects derived from company membership of a cluster. Also, the absorptive capacity (hereinafter 'AC') can mediate the process of innovation development by companies located in a cluster. The transformation and exploitation of knowledge could have a mediating effect between knowledge acquisition and innovative performance. The main objective of this work is to determine the key factors that affect the degree of generation and use of knowledge from the environment by companies and, consequently, their innovative performance and competitiveness. The elements analyzed are the companies' membership of a cluster and the AC. To this end, 30 most relevant papers published on this subject in the "Web of Science" database have been reviewed. Our findings show that, within a cluster, the knowledge coming from the companies' environment can significantly influence their innovative performance and competitiveness, although in this relationship, the degree of access and exploitation of the companies to this knowledge plays a fundamental role, which depends on a series of elements both internal and external to the company.

Keywords: Absorptive capacity, clusters, innovation, knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
1554 Sustainability Assessment of Agriculture and Biodiversity Issues through an Innovative Knowledge Mediation System Using Deliberation Support Tools and INTEGRAAL Method Based on Stakeholder Involvement

Authors: Ashiquer Rahman

Abstract:

The cutting edge knowledge mediation system called ‘ePLANETe’ provides a framework for building knowledge, tools, and methods for education, research, and sustainable practices, as well as the deliberative assessment support for Higher Education, Research Institutions, and elsewhere e.g., the collaborative learning and research on sustainability and biodiversity issues of territorial development sectors. The paper is to present the analytical perspective of the ‘ePLANETe’ concept and functionalities as an experimental platform for contributing to sustainability assessment. Now the ‘ePLANETe’ can be seen as experimentation of the challenges of “ICT for Green”. The digital technologies of ‘ePLANETe’ are exploited (i) to facilitate collaborative research, learning tools, and knowledge for sustainability challenges, and (ii) as deliberation support tools in pursuing of sustainability performance and practices in territorial governance, public policy, and business strategy, as well as in the higher education sectors itself. The paper investigates the dealing capacity of qualitative and quantitative assessment of agriculture sustainability through the stakeholder-based integrated assessment. Specifically, this paper focuses on integrating system methodologies with Deliberation Support Tools (DST) and INTEGRAAL method for collective assessment and decision-making in implementing regional plans. The report aims to identify the effective knowledge and tools to enable deliberations methodologies regarding practices on the sustainability of agriculture and biodiversity issues, societal responsibilities, and regional planning, concentrating on the question: “How to effectively mobilize resources (knowledge, tools, and methods) from different sources and at different scales regarding on agriculture and biodiversity issues to address sustainability challenges” that will create the scope for qualitative and quantitative assessments of sustainability as a new landmark of the agriculture sector.

Keywords: Biodiversity, Deliberation Support Tools, INTEGRAAL, stakeholder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 269
1553 Mobile Phone Banking Applies and Customer Intention - A Case Study in Libya

Authors: Iman E. Bouthahab, Badea B. Geador

Abstract:

Aim of this paper is to explore the prospect of a new approach of mobile phone banking in Libya. This study evaluates customer knowledge on commercial mobile banking in Libya. To examine the relationship between age, occupation and intention for using mobile banking for commercial purpose, a survey was conducted to gather information from one hundred Libyan bank clients. The results indicate that Libyan customers have accepted the new technology and they are ready to use it. There is no significant joint relationship between age and occupation found in intention to use mobile banking in Libya. On the other hand, the customers’ knowledge about mobile banking has a greater relationship with the intention. This study has implications for demographic researches and consumer behaviour disciplines. It also has profitable implications for banks and managers in Libya, as it will assist in better understanding of the Libyan consumers and their activities, when they develop their market strategies and new service.

 

Keywords: Banks in Libya, Customer Knowledge, Intention, Mobile banking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
1552 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: Retrieval, generative, deep learning, response generation, knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
1551 A Distributed Approach to Extract High Utility Itemsets from XML Data

Authors: S. Kannimuthu, K. Premalatha

Abstract:

This paper investigates a new data mining capability that entails mining of High Utility Itemsets (HUI) in a distributed environment. Existing research in data mining deals with only presence or absence of an items and do not consider the semantic measures like weight or cost of the items. Thus, HUI mining algorithm has evolved. HUI mining is the one kind of utility mining concept, aims to identify itemsets whose utility satisfies a given threshold. Although, the approach of mining HUIs in a distributed environment and mining of the same from XML data have not explored yet. In this work, a novel approach is proposed to mine HUIs from the XML based data in a distributed environment. This work utilizes Service Oriented Computing (SOC) paradigm which provides Knowledge as a Service (KaaS). The interesting patterns are provided via the web services with the help of knowledge server to answer the queries of the consumers. The performance of the approach is evaluated on various databases using execution time and memory consumption.

Keywords: Data mining, Knowledge as a Service, service oriented computing, utility mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
1550 An Overview of the Advice Process and the Scientific Production of the Adviser-Advised Relationship in the Areas of Engineering

Authors: Tales H. J. Moreira, Thiago M. R. Dias, Gray F. Moita

Abstract:

The adviser-advised relationship, in addition to the evident propagation of knowledge, can provide an increase in the scientific production of the advisors. Specifically, in post-graduate programs, in which the advised submit diverse papers in different means of publication, these end up boosting the production of their advisor, since in general the advisors appear as co-authors, responsible for instructing and assisting in the development of the work. Therefore, to visualize the orientation process and the scientific production resulting from this relation is another important way of analyzing the scientific collaboration in the different areas of knowledge. In this work, are used the data of orientations and postgraduate supervisions from the Lattes curricula, from the main advisors who work in the Engineering area, to obtain an overview of the process of orientation of this group, and even, to produce Academic genealogical trees, where it is possible to verify how knowledge has spread in the diverse areas of engineering.

Keywords: Academic genealogy, advice, engineering, lattes platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
1549 How Prior Knowledge Affects User's Understanding of System Requirements?

Authors: Balsam Mustafa, Safaai Deris

Abstract:

Requirements are critical to system validation as they guide all subsequent stages of systems development. Inadequately specified requirements generate systems that require major revisions or cause system failure entirely. Use Cases have become the main vehicle for requirements capture in many current Object Oriented (OO) development methodologies, and a means for developers to communicate with different stakeholders. In this paper we present the results of a laboratory experiment that explored whether different types of use case format are equally effective in facilitating high knowledge user-s understanding. Results showed that the provision of diagrams along with the textual use case descriptions significantly improved user comprehension of system requirements in both familiar and unfamiliar application domains. However, when comparing groups that received models of textual description accompanied with diagrams of different level of details (simple and detailed) we found no significant difference in performance.

Keywords: Prior knowledge, requirement specification, usecase format, user understanding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
1548 Discovery of Quantified Hierarchical Production Rules from Large Set of Discovered Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Automated discovery of Rule is, due to its applicability, one of the most fundamental and important method in KDD. It has been an active research area in the recent past. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form: Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. This paper focuses on the issue of mining Quantified rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses Quantified production rules as initial individuals of GP and discovers hierarchical structure. In proposed approach rules are quantified by using Dempster Shafer theory. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Quantified Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy, using Dempster Shafer theory. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Knowledge discovery in database, quantification, dempster shafer theory, genetic programming, hierarchy, subsumption matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
1547 Knowledge Mining in Web-based Learning Environments

Authors: Nittaya Kerdprasop, Kittisak Kerdprasop

Abstract:

The state of the art in instructional design for computer-assisted learning has been strongly influenced by advances in information technology, Internet and Web-based systems. The emphasis of educational systems has shifted from training to learning. The course delivered has also been changed from large inflexible content to sequential small chunks of learning objects. The concepts of learning objects together with the advanced technologies of Web and communications support the reusability, interoperability, and accessibility design criteria currently exploited by most learning systems. These concepts enable just-in-time learning. We propose to extend theses design criteria further to include the learnability concept that will help adapting content to the needs of learners. The learnability concept offers a better personalization leading to the creation and delivery of course content more appropriate to performance and interest of each learner. In this paper we present a new framework of learning environments containing knowledge discovery as a tool to automatically learn patterns of learning behavior from learners' profiles and history.

Keywords: Knowledge mining, Web-based learning, Learning environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
1546 Incremental Mining of Shocking Association Patterns

Authors: Eiad Yafi, Ahmed Sultan Al-Hegami, M. A. Alam, Ranjit Biswas

Abstract:

Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.

Keywords: Knowledge discovery in databases (KDD), Data mining, Incremental Association rules, Domain knowledge, Interestingness, Shocking rules (SHR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1545 An Efficient Technique for Extracting Fuzzy Rulesfrom Neural Networks

Authors: Besa Muslimi, Miriam A. M. Capretz, Jagath Samarabandu

Abstract:

Artificial neural networks (ANN) have the ability to model input-output relationships from processing raw data. This characteristic makes them invaluable in industry domains where such knowledge is scarce at best. In the recent decades, in order to overcome the black-box characteristic of ANNs, researchers have attempted to extract the knowledge embedded within ANNs in the form of rules that can be used in inference systems. This paper presents a new technique that is able to extract a small set of rules from a two-layer ANN. The extracted rules yield high classification accuracy when implemented within a fuzzy inference system. The technique targets industry domains that possess less complex problems for which no expert knowledge exists and for which a simpler solution is preferred to a complex one. The proposed technique is more efficient, simple, and applicable than most of the previously proposed techniques.

Keywords: fuzzy rule extraction, fuzzy systems, knowledgeacquisition, pattern recognition, artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1544 Graph-Based Text Similarity Measurement by Exploiting Wikipedia as Background Knowledge

Authors: Lu Zhang, Chunping Li, Jun Liu, Hui Wang

Abstract:

Text similarity measurement is a fundamental issue in many textual applications such as document clustering, classification, summarization and question answering. However, prevailing approaches based on Vector Space Model (VSM) more or less suffer from the limitation of Bag of Words (BOW), which ignores the semantic relationship among words. Enriching document representation with background knowledge from Wikipedia is proven to be an effective way to solve this problem, but most existing methods still cannot avoid similar flaws of BOW in a new vector space. In this paper, we propose a novel text similarity measurement which goes beyond VSM and can find semantic affinity between documents. Specifically, it is a unified graph model that exploits Wikipedia as background knowledge and synthesizes both document representation and similarity computation. The experimental results on two different datasets show that our approach significantly improves VSM-based methods in both text clustering and classification.

Keywords: Text classification, Text clustering, Text similarity, Wikipedia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
1543 A Quality-Oriented Approach toward Strategic Positioning in Higher Education Institutions

Authors: M. M. Mashhadi, K. Mohajeri, M. D. Nayeri

Abstract:

Positioning the organization in the strategic environment of its industry is one of the first and most important phases of the organizational strategic planning and in today knowledge-based economy has its importance been duplicated for higher education institutes as the centers of education, knowledge creation and knowledge worker training. Up to now, various models with diverse approaches have been applied to investigate organizations- strategic position in different industries. Regarding the essential importance and strategic role of quality in higher education institutes, in this study, a quality-oriented approach has been suggested to positioning them in their strategic environment. Then the European Foundation of Quality Management (EFQM) model has been adopted to position the top Iranian business schools in their strategic environment. The result of this study can be used in strategic planning of these institutes as well as the other Iranian business schools.

Keywords: Strategic planning, Strategic positioning, Quality, EFQM model, Higher education institutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
1542 Natural Language Database Interface for Selection of Data Using Grammar and Parsing

Authors: N. D. Karande, G. A. Patil

Abstract:

Databases have become ubiquitous. Almost all IT applications are storing into and retrieving information from databases. Retrieving information from the database requires knowledge of technical languages such as Structured Query Language (SQL). However majority of the users who interact with the databases do not have a technical background and are intimidated by the idea of using languages such as SQL. This has led to the development of a few Natural Language Database Interfaces (NLDBIs). A NLDBI allows the user to query the database in a natural language. This paper highlights on architecture of new NLDBI system, its implementation and discusses on results obtained. In most of the typical NLDBI systems the natural language statement is converted into an internal representation based on the syntactic and semantic knowledge of the natural language. This representation is then converted into queries using a representation converter. A natural language query is translated to an equivalent SQL query after processing through various stages. The work has been experimented on primitive database queries with certain constraints.

Keywords: Natural language database interface, representation converter, syntactic and semantic knowledge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
1541 Formal Verification of a Multicast Protocol in Mobile Networks

Authors: M. Matash Borujerdi, S.M. Mirzababaei

Abstract:

As computer network technology becomes increasingly complex, it becomes necessary to place greater requirements on the validity of developing standards and the resulting technology. Communication networks are based on large amounts of protocols. The validity of these protocols have to be proved either individually or in an integral fashion. One strategy for achieving this is to apply the growing field of formal methods. Formal methods research defines systems in high order logic so that automated reasoning can be applied for verification. In this research we represent and implement a formerly announced multicast protocol in Prolog language so that certain properties of the protocol can be verified. It is shown that by using this approach some minor faults in the protocol were found and repaired. Describing the protocol as facts and rules also have other benefits i.e. leads to a process-able knowledge. This knowledge can be transferred as ontology between systems in KQML format. Since the Prolog language can increase its knowledge base every time, this method can also be used to learn an intelligent network.

Keywords: Formal methods, MobiCast, Mobile Network, Multicast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
1540 The Traditional Malay Textile (TMT)Knowledge Model: Transformation towards Automated Mapping

Authors: Syerina Azlin Md Nasir, Nor Laila Md Noor, Suriyati Razali

Abstract:

The growing interest on national heritage preservation has led to intensive efforts on digital documentation of cultural heritage knowledge. Encapsulated within this effort is the focus on ontology development that will help facilitate the organization and retrieval of the knowledge. Ontologies surrounding cultural heritage domain are related to archives, museum and library information such as archaeology, artifacts, paintings, etc. The growth in number and size of ontologies indicates the well acceptance of its semantic enrichment in many emerging applications. Nowadays, there are many heritage information systems available for access. Among others is community-based e-museum designed to support the digital cultural heritage preservation. This work extends previous effort of developing the Traditional Malay Textile (TMT) Knowledge Model where the model is designed with the intention of auxiliary mapping with CIDOC CRM. Due to its internal constraints, the model needs to be transformed in advance. This paper addresses the issue by reviewing the previous harmonization works with CIDOC CRM as exemplars in refining the facets in the model particularly involving TMT-Artifact class. The result is an extensible model which could lead to a common view for automated mapping with CIDOC CRM. Hence, it promotes integration and exchange of textile information especially batik-related between communities in e-museum applications.

Keywords: automated mapping, cultural heritage, knowledgemodel, textile practice

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
1539 Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students

Authors: Philippe A. Martin

Abstract:

This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.

Keywords: knowledge sharing, knowledge evaluation, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
1538 Social Network Management Enhances Customer Relationship

Authors: Srisawas Siriporn, Rotchanakitumnuai Siriluck

Abstract:

The study aims to develop a framework of social network management to enhance customer relationship. Social network management of this research is derived from social network site management, individual and organization social network usage motivation. The survey was conducted with organization employees who have used social network to interact with customers. The results reveal that content, link, privacy and security, page design and interactivity are the major issues of social network site management. Content, link, privacy and security, individual and organization motivation have major impacts on encouraging business knowledge sharing among employees. Moreover, Page design and interactivity, content, organization motivation and knowledge sharing can improve customer relationships.

Keywords: Social network management, social network site, motivation, knowledge sharing, customer relationship

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
1537 Automatic Design Algorithm for the Tower Crane Foundations

Authors: Sungho Lee, Goonjae Lee, Chaeyeon Lim, Sunkuk Kim

Abstract:

Foundation of tower crane serves to ensure stability against vertical and horizontal forces. If foundation stress is not sufficient, tower crane may be subject to overturning, shearing or foundation settlement. Therefore, engineering review of stable support is a highly critical part of foundation design. However, there are not many professionals who can conduct engineering review of tower crane foundation and, if any, they have information only on a small number of cranes in which they have hands-on experience. It is also customary to rely on empirical knowledge and tower crane renter-s recommendations rather than designing foundation on the basis of engineering knowledge. Therefore, a foundation design automation system considering not only lifting conditions but also overturning risk, shearing and vertical force may facilitate production of foolproof foundation design for experts and enable even non-experts to utilize professional knowledge that only experts can access now. This study proposes Automatic Design Algorithm for the Tower Crane Foundations considering load and horizontal force.

Keywords: Tower Crane, Automatic Design, Foundations, Optimization Algorithm, Stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7213