Search results for: Nonlinear singular integral equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2498

Search results for: Nonlinear singular integral equations

2168 Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method

Authors: N. Outili, A-H. Meniai

Abstract:

Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.

Keywords: finite element method, Galerkine method, liquidliquid extraction modelling, packed column simulation, two dimensional model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
2167 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order

Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi

Abstract:

In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.

Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
2166 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: Decentralized, optimal control, output, singular perturb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
2165 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171
2164 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
2163 Certain Subordination Results For A Class Of Analytic Functions Defined By The Generalized Integral Operator

Authors: C. Selvaraj, K. R. Karthikeyan

Abstract:

We obtain several interesting subordination results for a class of analytic functions defined by using a generalized integral operator.

Keywords: Analytic functions, Hadamard product, Subordinating factor sequence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
2162 Pushover Analysis of Short Structures

Authors: M.O. Makhmalbaf, M. GhanooniBagha, M.A. Tutunchian, M. Zabihi Samani

Abstract:

In this paper first, Two buildings have been modeled and then analyzed using nonlinear static analysis method under two different conditions in Nonlinear SAP 2000 software. In the first condition the interaction of soil adjacent to the walls of basement are ignored while in the second case this interaction have been modeled using Gap elements of nonlinear SAP2000 software. Finally, comparing the results of two models, the effects of soil-structure on period, target point displacement, internal forces, shape deformations and base shears have been studied. According to the results, this interaction has always increased the base shear of buildings, decreased the period of structure and target point displacement, and often decreased the internal forces and displacements.

Keywords: Seismic Rehabilitation, Soil-Structure Interaction, Short Structure, Nonlinear Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
2161 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells

Authors: András Szekrényes

Abstract:

Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.

Keywords: J-integral, Lévy method, third-order shell theory, state space solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
2160 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input

Authors: Toshinori Nawata, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
2159 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (I)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
2158 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (II)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
2157 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová

Abstract:

The article presents two mathematical models of the interaction between a rotating shaft and an incompressible fluid. The mathematical model includes both the journal bearings and the axially traversed hydrodynamic sealing gaps of hydraulic machines. A method is shown for the identification of additional effects of the fluid acting on the rotor of the machine, both for a linear and a nonlinear model. The interaction is expressed by matrices of mass, stiffness and damping.

Keywords: CFD modeling, hydrodynamic gap, matrices of mass, stiffness and damping, nonlinear mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
2156 Monotonic and Cyclic J-integral Estimation for Through-Wall Cracked Straight Pipes

Authors: Rohit, S. Vishnuvardhan, P. Gandhi, Nagesh R. Iyer

Abstract:

The evaluation of energy release rate and centre Crack Opening Displacement (COD) for circumferential Through-Wall Cracked (TWC) pipes is an important issue in the assessment of critical crack length for unstable fracture. The ability to predict crack growth continues to be an important component of research for several structural materials. Crack growth predictions can aid the understanding of the useful life of a structural component and the determination of inspection intervals and criteria. In this context, studies were carried out at CSIR-SERC on Nuclear Power Plant (NPP) piping components subjected to monotonic as well as cyclic loading to assess the damage for crack growth due to low-cycle fatigue in circumferentially TWC pipes.

Keywords: 304LN stainless steel, cyclic J-integral, Elastic- Plastic Fracture Mechanics, J-integral, Through-wall crack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
2155 Study of Stress Wave Propagation with NHDMOC

Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang

Abstract:

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Keywords: MOC, NHDMOC, visco-elastic, wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
2154 On a Class of Inverse Problems for Degenerate Differential Equations

Authors: Fadi Awawdeh, H.M. Jaradat

Abstract:

In this paper, we establish existence and uniqueness of solutions for a class of inverse problems of degenerate differential equations. The main tool is the perturbation theory for linear operators.

Keywords: Inverse Problem, Degenerate Differential Equations, Perturbation Theory for Linear Operators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
2153 Study on Optimal Control Strategy of PM2.5 in Wuhan, China

Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun

Abstract:

In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.

Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
2152 A Family of Improved Secant-Like Method with Super-Linear Convergence

Authors: Liang Chen

Abstract:

A family of improved secant-like method is proposed in this paper. Further, the analysis of the convergence shows that this method has super-linear convergence. Efficiency are demonstrated by numerical experiments when the choice of α is correct.

Keywords: Nonlinear equations, Secant method, Convergence order, Secant-like method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
2151 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y''' = f(x, y, y', y''), y(α)=y0, y'(α)=β, y''(α)=η with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non – stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep, Self starting, Third Order Ordinary Differential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
2150 Symmetries, Conservation Laws and Reduction of Wave and Gordon-type Equations on Riemannian Manifolds

Authors: Sameerah Jamal, Abdul Hamid Kara, Ashfaque H. Bokhari

Abstract:

Equations on curved manifolds display interesting properties in a number of ways. In particular, the symmetries and, therefore, the conservation laws reduce depending on how curved the manifold is. Of particular interest are the wave and Gordon-type equations; we study the symmetry properties and conservation laws of these equations on the Milne and Bianchi type III metrics. Properties of reduction procedures via symmetries, variational structures and conservation laws are more involved than on the well known flat (Minkowski) manifold.

Keywords: Bianchi metric, conservation laws, Milne metric, symmetries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
2149 Investigation of Stability of Functionally Graded Material when Encountering Periodic Loading

Authors: M. Amiri

Abstract:

In this work, functionally graded materials (FGMs), subjected to loading, which varies with time has been studied. The material properties of FGM are changing through the thickness of material as power law distribution. The conical shells have been chosen for this study so in the first step capability equations for FGM have been obtained. With Galerkin method, these equations have been replaced with time dependant differential equations with variable coefficient. These equations have solved for different initial conditions with variation methods. Important parameters in loading conditions are semi-vertex angle, external pressure and material properties. Results validation has been done by comparison between with those in previous studies of other researchers.

Keywords: Impulsive semi-vertex angle, loading, functionally graded materials, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
2148 Some Static Isotropic Perfect Fluid Spheres in General Relativity

Authors: Sachin Kumar, Y. K. Gupta, J. R. Sharma

Abstract:

In the present article, a new class of solutions of Einstein field equations is investigated for a spherically symmetric space-time when the source of gravitation is a perfect fluid. All the solutions have been derived by making some suitable arrangements in the field equations. The solutions so obtained have been seen to describe Schwarzschild interior solutions. Most of the solutions are subjected to the reality conditions. As far as the authors are aware the solutions are new.

Keywords: Einstein's equations, General Relativity, PerfectFluid, Spherical symmetric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
2147 Numerical Simulation of a Conventional Heat Pipe

Authors: Shoeib Mahjoub, Ali Mahtabroshan

Abstract:

The steady incompressible flow has been solved in cylindrical coordinates in both vapour region and wick structure. The governing equations in vapour region are continuity, Navier-Stokes and energy equations. These equations have been solved using SIMPLE algorithm. For study of parameters variation on heat pipe operation, a benchmark has been chosen and the effect of changing one parameter has been analyzed when the others have been fixed.

Keywords: Vapour region, conventional heat pipe, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4195
2146 New Delay-dependent Stability Conditions for Neutral Systems with Nonlinear Perturbations

Authors: Lianglin Xiong, Xiuyong Ding, Shouming Zhong

Abstract:

In this paper, the problem of asymptotical stability of neutral systems with nonlinear perturbations is investigated. Based on a class of novel augment Lyapunov functionals which contain freeweighting matrices, some new delay-dependent asymptotical stability criteria are formulated in terms of linear matrix inequalities (LMIs) by using new inequality analysis technique. Numerical examples are given to demonstrate the derived condition are much less conservative than those given in the literature.

Keywords: Asymptotical stability, neutral system, nonlinear perturbation, delay-dependent, linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
2145 Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution

Authors: E. G. Bautista, J. M. Reyes, O. Bautista, J. C. Arcos

Abstract:

In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.

Keywords: Surface waves, Asymptotic solution, Power law function, Non-dispersive waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
2144 Tracking Objects in Color Image Sequences: Application to Football Images

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
2143 A Qualitative Description of the Dynamics in the Interactions between Three Populations: Pollinators, Plants, and Herbivores

Authors: Miriam Sosa-Díaz, Faustino Sánchez-Garduño

Abstract:

In population dynamics the study of both, the abundance and the spatial distribution of the populations in a given habitat, is a fundamental issue a From ecological point of view, the determination of the factors influencing such changes involves important problems. In this paper a mathematical model to describe the temporal dynamic and the spatiotemporal dynamic of the interaction of three populations (pollinators, plants and herbivores) is presented. The study we present is carried out by stages: 1. The temporal dynamics and 2. The spatio-temporal dynamics. In turn, each of these stages is developed by considering three cases which correspond to the dynamics of each type of interaction. For instance, for stage 1, we consider three ODE nonlinear systems describing the pollinator-plant, plant-herbivore and plant-pollinator-herbivore, interactions, respectively. In each of these systems different types of dynamical behaviors are reported. Namely, transcritical and pitchfork bifurcations, existence of a limit cycle, existence of a heteroclinic orbit, etc. For the spatiotemporal dynamics of the two mathematical models a novel factor are introduced. This consists in considering that both, the pollinators and the herbivores, move towards those places of the habitat where the plant population density is high. In mathematical terms, this means that the diffusive part of the pollinators and herbivores equations depend on the plant population density. The analysis of this part is presented by considering pairs of populations, i. e., the pollinator-plant and plant-herbivore interactions and at the end the two mathematical model is presented, these models consist of two coupled nonlinear partial differential equations of reaction-diffusion type. These are defined on a rectangular domain with the homogeneous Neumann boundary conditions. We focused in the role played by the density dependent diffusion term into the coexistence of the populations. For both, the temporal and spatio-temporal dynamics, a several of numerical simulations are included.

Keywords: Bifurcation, heteroclinic orbits, steady state, traveling wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
2142 Rock Thickness Measurement by Using Self-Excited Acoustical System

Authors: JanuszKwaśniewski, IreneuszDominik, KrzysztofLalik

Abstract:

The knowledge about rock layers thickness,especially above drilled mining pavements is crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-excited Acoustical System is presentedin the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rocklayer. The idea is to find two resonance frequencies of the self-exited system,which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Keywords: Autooscillator, non-destructive testing, rock thickness measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
2141 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
2140 On the Fuzzy Difference Equation xn+1 = A +

Authors: Qianhong Zhang, Lihui Yang, Daixi Liao,

Abstract:

In this paper, we study the existence, the boundedness and the asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equations xn+1 = A + k i=0 Bi xn-i , n= 0, 1, · · · . where (xn) is a sequence of positive fuzzy numbers, A,Bi and the initial values x-k, x-k+1, · · · , x0 are positive fuzzy numbers. k ∈ {0, 1, 2, · · ·}.

Keywords: Fuzzy difference equation, boundedness, persistence, equilibrium point, asymptotic behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
2139 Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method

Authors: Harpreet Kaur, Vinod Mishra, R. C. Mittal

Abstract:

In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.

Keywords: Boundary layer Blasius equation, collocation points, quasi-linearization process, uniform haar wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276