Search results for: Fuzzy C-means
611 Predictive Fuzzy Logic Controller for Agile Micro-Satellite
Authors: A. Bellar, M.K. Fellah, A.M. Si Mohammed, M. Bensaada, L. Boukhris
Abstract:
This paper presents the use of the predictive fuzzy logic controller (PFLC) applied to attitude control system for agile micro-satellite. In order to reduce the effect of unpredictable time delays and large uncertainties, the algorithm employs predictive control to predict the attitude of the satellite. Comparison of the PFLC and conventional fuzzy logic controller (FLC) is presented to evaluate the performance of the control system during attitude maneuver. The two proposed models have been analyzed with the same level of noise and external disturbances. Simulation results demonstrated the feasibility and advantages of the PFLC on the attitude determination and control system (ADCS) of agile satellite.
Keywords: Agile micro-satellite, Attitude control, fuzzy logic, predictive control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762610 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering
Authors: Elizabeth B. Varghese, M. Wilscy
Abstract:
A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.
Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241609 Fuzzy Separation Bearing Control for Mobile Robots Formation
Authors: A. Bazoula, H. Maaref
Abstract:
In this article we address the problem of mobile robot formation control. Indeed, the most work, in this domain, have studied extensively classical control for keeping a formation of mobile robots. In this work, we design an FLC (Fuzzy logic Controller) controller for separation and bearing control (SBC). Indeed, the leader mobile robot is controlled to follow an arbitrary reference path, and the follower mobile robot use the FSBC (Fuzzy Separation and Bearing Control) to keep constant relative distance and constant angle to the leader robot. The efficiency and simplicity of this control law has been proven by simulation on different situation.
Keywords: Autonomous mobile robot, Formation control, Fuzzy logic control, Multiple robots, Leader-Follower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724608 Project Selection by Using a Fuzzy TOPSIS Technique
Authors: M. Salehi, R. Tavakkoli-Moghaddam
Abstract:
Selection of a project among a set of possible alternatives is a difficult task that the decision maker (DM) has to face. In this paper, by using a fuzzy TOPSIS technique we propose a new method for a project selection problem. After reviewing four common methods of comparing investment alternatives (net present value, rate of return, benefit cost analysis and payback period) we use them as criteria in a TOPSIS technique. First we calculate the weight of each criterion by a pairwise comparison and then we utilize the improved TOPSIS assessment for the project selection.Keywords: Fuzzy Theory, Pairwise Comparison, ProjectSelection, TOPSIS Technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639607 Small Satellite Modelling and Attitude Control Using Fuzzy Logic
Authors: Amirhossein Asadabadi, Amir Anvar
Abstract:
Small satellites have become increasingly popular recently as a means of providing educational institutes with the chance to design, construct, and test their spacecraft from beginning to the possible launch due to the low launching cost. This approach is remarkably cost saving because of the weight and size reduction of such satellites. Weight reduction could be realised by utilising electromagnetic coils solely, instead of different types of actuators. This paper describes the restrictions of using only “Electromagnetic" actuation for 3D stabilisation and how to make the magnetorquer based attitude control feasible using Fuzzy Logic Control (FLC). The design is developed to stabilize the spacecraft against gravity gradient disturbances with a three-axis stabilizing capability.
Keywords: Fuzzy, Attitude Control, Small Satellite, Fuzzy Logic Control, Electromagnetic, Magnetic Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115606 A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering
Authors: Emrah Bulut, Okan Duru, Shigeru Yoshida
Abstract:
In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.
Keywords: C-means clustering, Fuzzy time series, Multi-variate design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299605 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.
Keywords: Classification, fuzzy logic, tolerance relations, rainfall data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026604 Closed Loop Control of Bridgeless Cuk Converter Using Fuzzy Logic Controller for PFC Applications
Authors: Nesapriya. P., S. Rajalaxmi
Abstract:
This paper is based on the bridgeless single-phase Ac–Dc Power Factor Correction (PFC) converters with Fuzzy Logic Controller. High frequency isolated Cuk converters are used as a modular dc-dc converter in Discontinuous Conduction Mode (DCM) of operation of Power Factor Correction. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the Membership Functions (MFs) and to improve the efficiency and to eliminate the power quality problems. The output of Fuzzy controller is compared with High frequency triangular wave to generate PWM gating signals of Cuk converter. The proposed topologies are designed to work in Discontinuous Conduction Mode (DCM) to achieve a unity power factor and low total harmonic distortion of the input current. The Fuzzy Logic Controller gives additional advantages such as accurate result, uncertainty and imprecision and automatic control circuitry. Performance comparisons between the proposed and conventional controllers and circuits are performed based on circuit simulations.
Keywords: Fuzzy Logic Controller (FLC), Bridgeless rectifier, Cuk converter, Pulse Width Modulation (PWM), Power Factor Correction, Total Harmonic Distortion (THD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4061603 Combing LCIA and Fuzzy Risk Assessment for Environmental Impact Assessment
Authors: Kevin Fong-Rey Liu, Cheng-Wu Chen, Ken Yeh, Han-Hsi Liang
Abstract:
Environmental impact assessment (EIA) is a procedure tool of environmental management for identifying, predicting, evaluating and mitigating the adverse effects of development proposals. EIA reports usually analyze how the amounts or concentrations of pollutants obey the relevant standards. Actually, many analytical tools can deepen the analysis of environmental impacts in EIA reports, such as life cycle assessment (LCA) and environmental risk assessment (ERA). Life cycle impact assessment (LCIA) is one of steps in LCA to introduce the causal relationships among environmental hazards and damage. Incorporating the LCIA concept into ERA as an integrated tool for EIA can extend the focus of the regulatory compliance of environmental impacts to determine of the significance of environmental impacts. Sometimes, when using integrated tools, it is necessary to consider fuzzy situations due to insufficient information; therefore, ERA should be generalized to fuzzy risk assessment (FRA). Finally, the use of the proposed methodology is demonstrated through the study case of the expansion plan of the world-s largest plastics processing factory.
Keywords: Fuzzy risk analysis, life cycle impact assessment, fuzzy logic, environmental impact assessment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919602 On the Parameter Optimization of Fuzzy Inference Systems
Authors: Erika Martinez Ramirez, Rene V. Mayorga
Abstract:
Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984601 Controlling of Load Elevators by the Fuzzy Logic Method
Authors: Ismail Saritas, Abdullah Adiyaman
Abstract:
In this study, a fuzzy-logic based control system was designed to ensure that time and energy is saved during the operation of load elevators which are used during the construction of tall buildings. In the control system that was devised, for the load elevators to work more efficiently, the energy interval where the motor worked was taken as the output variable whereas the amount of load and the building height were taken as input variables. The most appropriate working intervals depending on the characteristics of these variables were defined by the help of an expert. Fuzzy expert system software was formed using Delphi programming language. In this design, mamdani max-min inference mechanism was used and the centroid method was employed in the clarification procedure. In conclusion, it is observed that the system that was designed is feasible and this is supported by statistical analyses..
Keywords: Fuzzy Logic Control, DC Motor, Load Elevators, Power Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596600 Fuzzy Predictive Pursuit Guidance in the Homing Missiles
Authors: Mustafa Resa Becan, Ahmet Kuzucu
Abstract:
A fuzzy predictive pursuit guidance is proposed as an alternative to the conventional methods. The purpose of this scheme is to obtain a stable and fast guidance. The noise effects must be reduced in homing missile guidance to get an accurate control. An aerodynamic missile model is simulated first and a fuzzy predictive pursuit control algorithm is applied to reduce the noise effects. The performance of this algorithm is compared with the performance of the classical proportional derivative control. Stability analysis of the proposed guidance method is performed and compared with the stability properties of other guidance methods. Simulation results show that the proposed method provides the satisfying performance.Keywords: Fuzzy, noise effect, predictive, pursuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889599 Sensory Evaluation of the Selected Coffee Products Using Fuzzy Approach
Authors: M.A. Lazim, M. Suriani
Abstract:
Knowing consumers' preferences and perceptions of the sensory evaluation of drink products are very significant to manufacturers and retailers alike. With no appropriate sensory analysis, there is a high risk of market disappointment. This paper aims to rank the selected coffee products and also to determine the best of quality attribute through sensory evaluation using fuzzy decision making model. Three products of coffee drinks were used for sensory evaluation. Data were collected from thirty judges at a hypermarket in Kuala Terengganu, Malaysia. The judges were asked to specify their sensory evaluation in linguistic terms of the quality attributes of colour, smell, taste and mouth feel for each product and also the weight of each quality attribute. Five fuzzy linguistic terms represent the quality attributes were introduced prior analysing. The judgment membership function and the weights were compared to rank the products and also to determine the best quality attribute. The product of Indoc was judged as the first in ranking and 'taste' as the best quality attribute. These implicate the importance of sensory evaluation in identifying consumers- preferences and also the competency of fuzzy approach in decision making.Keywords: fuzzy decision making, fuzzy linguistic, membership function, sensory evaluation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780598 A New Self-Tuning Fuzzy PD Controller of a BDFIG for Wind Energy Conversion
Authors: Zoheir Tir, Rachid Abdessemed
Abstract:
This paper presents a new control scheme to control a brushless doubly fed induction generator (BDFIG) using back-to-back PWM converters for wind power generation. The proposed control scheme is a New Self-Tuning Fuzzy Proportional-Derivative Controller (NSTFPDC). The goal of BDFIG control is to achieve a similar dynamic performance to the doubly fed induction generator (DFIG), exploiting the well-known induction machine vector control philosophy. The performance of NSTFPDC controller has been investigated and compared with the two controllers, called Proportional–Integral (PI) and PD-like Fuzzy Logic controller (PD-like FLC) based BDFIG. The simulation results demonstrate the effectiveness and the robustness of the NSTFPDC controller.
Keywords: Brushless Doubly Fed Induction Generator (BDFIG), PI controller, PD-like Fuzzy Logic controller, New Self-Tuning Fuzzy Proportional-Derivative Controller (NSTFPDC), Scaling factor, back-to-back PWM converters, wind energy system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386597 Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault
Authors: V. S. Meenakshi, G. Padmavathi
Abstract:
Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.Keywords: Biometric Template Security, Crypto Biometric Systems, Hardening Fuzzy Vault, Min-Entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159596 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process
Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon
Abstract:
In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.
Keywords: Fuzzy logic, paraconsistent annotated logic, level control, digital PID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237595 Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.Keywords: Data Mining, Fuzzy Clustering, Relational Clustering, Medoid-Based Clustering, Cluster Analysis, Unsupervised Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402594 A Fuzzy System to Analyze SIVD Diseases Using the Transcranial Magnetic Stimulation
Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana
Abstract:
The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia (SIVD) and to measure the effect of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.
Keywords: TMS, EMG, fuzzy logic, transcranial magnetic stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405593 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks
Authors: Debajyoti Mishra, Urmila Bhanja
Abstract:
In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735592 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection
Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson
Abstract:
A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.Keywords: Image processing, artificial neural network, anomaly detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113591 Fuzzy Approach for Ranking of Motor Vehicles Involved in Road Accidents
Authors: Lazim Abdullah, N orhanadiah Zam
Abstract:
Increasing number of vehicles and lack of awareness among road users may lead to road accidents. However no specific literature was found to rank vehicles involved in accidents based on fuzzy variables of road users. This paper proposes a ranking of four selected motor vehicles involved in road accidents. Human and non-human factors that normally linked with road accidents are considered for ranking. The imprecision or vagueness inherent in the subjective assessment of the experts has led the application of fuzzy sets theory to deal with ranking problems. Data in form of linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. The Multi Criteria Decision Making, fuzzy TOPSIS was applied in computational procedures. From the analysis, it shows that motorcycles vehicles yielded the highest closeness coefficient at 0.6225. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the motorcycles recorded the first rank.
Keywords: Road accidents, decision making, closeness coefficient, fuzzy number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541590 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference
Authors: Ayman A. Aly, Abdallah A. Alshnnaway
Abstract:
The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568589 Improved BEENISH Protocol for Wireless Sensor Networks Based Upon Fuzzy Inference System
Authors: Rishabh Sharma, Renu Vig, Neeraj Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.
Keywords: Wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477588 Stability Analysis of Impulsive Stochastic Fuzzy Cellular Neural Networks with Time-varying Delays and Reaction-diffusion Terms
Authors: Xinhua Zhang, Kelin Li
Abstract:
In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy neural networks with timevarying delays and reaction-diffusion is considered. By utilizing suitable Lyapunov-Krasovskii funcational, the inequality technique and stochastic analysis technique, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive stochastic fuzzy cellular neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of fuzzy neural networks. An example is given to show the effectiveness of the obtained results.
Keywords: Exponential stability, stochastic fuzzy cellular neural networks, time-varying delays, impulses, reaction-diffusion terms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382587 Micropower Fuzzy Linguistic-Hedges Circuit in Current-Mode Approach
Authors: E. Farshidi
Abstract:
In this paper, based on a novel synthesis, a set of new simplified circuit design to implement the linguistic-hedge operations for adjusting the fuzzy membership function set is presented. The circuits work in current-mode and employ floating-gate MOS (FGMOS) transistors that operate in weak inversion region. Compared to the other proposed circuits, these circuits feature severe reduction of the elements number, low supply voltage (0.7V), low power consumption (<200nW), immunity from body effect and wide input dynamic range (>60dB). In this paper, a set of fuzzy linguistic hedge circuits, including absolutely, very, much more, more, plus minus, more or less and slightly, has been implemented in 0.18 mm CMOS process. Simulation results by Hspice confirm the validity of the proposed design technique and show high performance of the circuits.
Keywords: Current-mode, Linguistic-Hedge, Fuzzy Logic, lowpower
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764586 A Trust Model using Fuzzy Logic in Wireless Sensor Network
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Adapting various sensor devices to communicate within sensor networks empowers us by providing range of possibilities. The sensors in sensor networks need to know their measurable belief of trust for efficient and safe communication. In this paper, we suggested a trust model using fuzzy logic in sensor network. Trust is an aggregation of consensus given a set of past interaction among sensors. We applied our suggested model to sensor networks in order to show how trust mechanisms are involved in communicating algorithm to choose the proper path from source to destination.Keywords: Fuzzy, Sensor Networks, Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3555585 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects
Authors: Preeda Sansakorn, Min An
Abstract:
In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.
Keywords: Safety risks assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343584 Fuzzy based Security Threshold Determining for the Statistical En-Route Filtering in Sensor Networks
Authors: Hae Young Lee, Tae Ho Cho
Abstract:
In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false reports during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and overhead. In this paper, we propose a fuzzy logic for determining a security threshold value in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the number of partitions in a global key pool, the number of compromised partitions, and the energy level of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.
Keywords: Fuzzy logic, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581583 Multisensor Agent Based Intrusion Detection
Authors: Richard A. Wasniowski
Abstract:
In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.Keywords: Intrusion detection, fuzzy logic, agents, networksecurity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919582 Solution of Fuzzy Differential Equation under Generalized Differentiability by Genetic Programming
Authors: N. Kumaresan, J. Kavikumar, M. Kumudthaa, Kuru Ratnavelu
Abstract:
In this paper, solution of fuzzy differential equation under general differentiability is obtained by genetic programming (GP). The obtained solution in this method is equivalent or very close to the exact solution of the problem. Accuracy of the solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.Keywords: Fuzzy differential equation, Generalized differentiability, Genetic programming and H-difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244