Search results for: mass flow rates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3716

Search results for: mass flow rates

176 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach

Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.

Keywords: Air-conditioned coaches, fire propagation, flame contour, soot flow, train fire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
175 Soil-Structure Interaction Models for the Reinforced Foundation System: A State-of-the-Art Review

Authors: Ashwini V. Chavan, Sukhanand S. Bhosale

Abstract:

Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of it over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation, respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model’. The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. A flow-chart showing procedure for compution of deformation and mobilized tension is also incorporated in the paper. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models. 

Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
174 Prophylactic Effects of Dairy Kluyveromyces marxianus YAS through Overexpression of BAX, CASP 3, CASP 8 and CASP 9 on Human Colon Cancer Cell Lines

Authors: Amir Saber Gharamaleki, Beitollah Alipour, Zeinab Faghfoori, Ahmad YariKhosroushahi

Abstract:

Colorectal cancer (CRC) is one of the most prevalent cancers and intestinal microbial community plays an important role in colorectal tumorigenesis. Probiotics have recently been assessed as effective anti-proliferative agents and thus this study was performed to examine whether CRC undergo apoptosis by treating with isolated Iranian native dairy yeast, Kluyveromyces marxianus YAS, secretion metabolites. The cytotoxicity assessments on cells (HT-29, Caco-2) were accomplished through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as well as qualitative DAPI (4',6-diamidino-2-phenylindole staining) and quantitative (flow cytometry assessments) evaluations of apoptosis. To evaluate the main mechanism of apoptosis, Real time PCR method was applied. Kluyveromyces marxianus YAS secretions (IC50) showed significant cytotoxicity against HT-29 and Caco-2 cancer cell lines (66.57 % and 66.34 % apoptosis) similar to 5-Fluorouracil (5-FU) while apoptosis only was developed in 27.57 % of KDR normal cells. The prophylactic effects of Kluyveromyces marxianus (PTCC 5195), as a reference yeast, was not similar to Kluyveromyces marxianus YAS indicating strain dependency of bioactivities on CRC disease prevention. Based on real time PCR results, the main cytotoxicity is related to apoptosis phenomenon and the core related mechanism is depended on the overexpression of BAX, CASP 9, CASP 8 and CASP 3 inducing apoptosis genes. However, several investigations should be conducted to precisely determine the effective compounds to be used as anticancer therapeutics in the future.

Keywords: Anticancer, anti-proliferative, apoptosis, cytotoxicity, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
173 Magnitude and Determinants of Overweight and Obesity among High School Adolescents in Addis Ababa, Ethiopia

Authors: Mulugeta Shegaze, Mekitie Wondafrash, Alemayehu A. Alemayehu, Shikur Mohammed, Zewdu Shewangezaw, Mukerem Abdo, Gebresilasea Gendisha

Abstract:

Background: The 2004 World Health Assembly called for specific actions to halt the overweight and obesity epidemic that is currently penetrating urban populations in the developing world. Adolescents require particular attention due to their vulnerability to develop obesity and the fact that adolescent weight tracks strongly into adulthood. However, there is scarcity of information on the modifiable risk factors to be targeted for primary intervention among urban adolescents in Ethiopia. This study was aimed at determining the magnitude and risk factors of overweight and obesity among high school adolescents in Addis Ababa. Methods: An institution-based cross-sectional study was conducted in February and March 2014 on 456 randomly selected adolescents from 20 high schools in Addis Ababa city.  Demographic data and other risk factors of overweight and obesity were collected using self-administered structured questionnaire, whereas anthropometric measurements of weight and height were taken using calibrated equipment and standardized techniques. The WHO STEPS instrument for chronic disease risk was applied to assess dietary habit and physical activity. Overweight and obesity status was determined based on BMI-for-age percentiles of WHO 2007 reference population. Results: The prevalence rates of overweight, obesity, and overall overweight/ obesity among high school adolescents in Addis Ababa were 9.7% (95%CI = 6.9-12.4%), 4.2% (95%CI = 2.3-6.0%), and 13.9% (95%CI = 10.6-17.1%), respectively. Overweight/obesity prevalence was highest among female adolescents, in private schools, and in the higher wealth category. In multivariable regression model, being female [AOR(95%CI) = 5.4(2.5,12.1)], being from private school [AOR(95%CI) = 3.0(1.4,6.2)], having >3 regular meals [AOR(95%CI) = 4.0(1.3,13.0)], consumption of sweet foods [AOR(95%CI) = 5.0(2.4,10.3)] and spending >3 hours/day sitting [AOR(95%CI) = 3.5(1.7,7.2)] were found to increase overweight/ obesity risk, whereas high Total Physical Activity level [AOR(95%CI) = 0.21(0.08,0.57)] and better nutrition knowledge [AOR(95%CI) = 0.160.07,0.37)] were found protective. Conclusions: More than one in ten of the high school adolescents were affected by overweight/obesity with dietary habit and physical activity are important modifiable risk factors. Well-tailored nutrition education program targeting lifestyle change should be initiated with more emphasis to female adolescents and students in private schools.

Keywords: Adolescents, NCDs, overweight, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594
172 Preventive Interventions for Central Venous Catheter Infections in Intensive Care Units: A Systematic Literature Review

Authors: Jakob Renko, Deja Praprotnik, Kristina Martinovič, Igor Karnjuš

Abstract:

Catheter-related bloodstream infections are a major burden for healthcare and patients. Although infections of this type cannot be completely avoided, they can be reduced by taking preventive measures. The aim of this study is to review and analyze the existing literature on preventive interventions to prevent central venous catheters (CVC) infections. A systematic literature review was carried out. The international databases CINAHL, Medline, PubMed, and Web of Science were searched using the search strategy: "catheter-related infections" AND "intensive care units" AND "prevention" AND "central venous catheter." Articles that met the inclusion and exclusion criteria were included in the study. The literature search flow is illustrated by the PRISMA diagram. The descriptive research method was used to analyze the data. Out of 554 search results, 22 surveys were included in the final analysis. We identified seven relevant preventive measures to prevent CVC infections: washing the whole body with chlorhexidine gluconate (CHG) solution, disinfecting the CVC entry site with CHG solution, use of CHG or silver dressings, alcohol protective caps, CVC care education, selecting appropriate catheter and multicomponent care bundles. Both single interventions and multicomponent care bundles have been shown to be currently effective measures to prevent CVC infections in adult patients in the ICU. None of the measures identified stood out in terms of their effectiveness. Prevention work to reduce CVC infections in the ICU is a complex process that requires the simultaneous consideration of several factors.

Keywords: Central venous access, critically ill patients, hospital-acquired complications, prevention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261
171 Crash Severity Modeling in Urban Highways Using Backward Regression Method

Authors: F. Rezaie Moghaddam, T. Rezaie Moghaddam, M. Pasbani Khiavi, M. Ali Ghorbani

Abstract:

Identifying and classifying intersections according to severity is very important for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highway safety organizations have considered intersection safety among their priorities. In spite of significant advances in highways safety, the large numbers of crashes with high severities still occur in the highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. Previous studies lacked a model capable of simultaneous illustration of the influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity. Thus, this paper is aimed at developing the models to illustrate the simultaneous influence of these variables on the crash severity in urban highways. The models represented in this study have been developed using binary Logit Models. SPSS software has been used to calibrate the models. It must be mentioned that backward regression method in SPSS was used to identify the significant variables in the model. Consider to obtained results it can be concluded that the main factor in increasing of crash severity in urban highways are driver age, movement with reverse gear, technical defect of the vehicle, vehicle collision with motorcycle and bicycle, bridge, frontal impact collisions, frontal-lateral collisions and multi-vehicle crashes in urban highways which always increase the crash severity in urban highways.

Keywords: Backward regression, crash severity, speed, urbanhighways.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
170 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Zimbabwe has no study that notes if grid failures have been caused by GICs. Research and monitoring are needed to investigate this possible relationship purpose of this paper is to characterize GICs with a power grid network. This paper analyses data collected, which are geomagnetic data, which include the Kp index, Disturbance storm time (DST) index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: Adverse space weather, DST index, geomagnetically induced currents, Kp index, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161
169 Development and Validation of a UPLC Method for the Determination of Albendazole Residues on Pharmaceutical Manufacturing Equipment Surfaces

Authors: R. S. Chandan, M. Vasudevan, Deecaraman, B. M. Gurupadayya

Abstract:

In Pharmaceutical industries, it is very important to remove drug residues from the equipment and areas used. The cleaning procedure must be validated, so special attention must be devoted to the methods used for analysis of trace amounts of drugs. A rapid, sensitive and specific reverse phase ultra performance liquid chromatographic (UPLC) method was developed for the quantitative determination of Albendazole in cleaning validation swab samples. The method was validated using an ACQUITY HSS C18, 50 x 2.1mm, 1.8μ column with a isocratic mobile phase containing a mixture of 1.36g of Potassium dihydrogenphosphate in 1000mL MilliQ water, 2mL of triethylamine and pH adjusted to 2.3 ± 0.05 with ortho-phosphoric acid, Acetonitrile and Methanol (50:40:10 v/v). The flow rate of the mobile phase was 0.5 mL min-1 with a column temperature of 350C and detection wavelength at 254nm using PDA detector. The injection volume was 2µl. Cotton swabs, moisten with acetonitrile were used to remove any residue of drug from stainless steel, teflon, rubber and silicon plates which mimic the production equipment surface and the mean extraction-recovery was found to be 91.8. The selected chromatographic condition was found to effectively elute Albendazole with retention time of 0.67min. The proposed method was found to be linear over the range of 0.2 to 150µg/mL and correlation coefficient obtained is 0.9992. The proposed method was found to be accurate, precise, reproducible and specific and it can also be used for routine quality control analysis of these drugs in biological samples either alone or in combined pharmaceutical dosage forms.

Keywords: Cleaning validation, Albendazole, residues, swab analysis, UPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3105
168 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven

Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey

Abstract:

The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.

Keywords: Genus Geobacillus, NADPH/NADH-dependent reductase, Selenium nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
167 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: Vortex induced vibration, limit cycle, CFD, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
166 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential

Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen

Abstract:

Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.

Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
165 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw

Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar

Abstract:

Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.

Keywords: ANSYS-Fluent, hydrodynamic behavior, SSHE, thermal behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
164 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation

Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev

Abstract:

The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.

Keywords: CO and VOCs oxidation, copper oxide, ceria, gold catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
163 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure

Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther

Abstract:

Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.

Keywords: Aluminum alloy, fatigue performance, fracture, friction stir welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
162 The Effect of Nutrition Education on Adherence to the Mediterranean Diet and Sustainable Healthy Eating Behaviors in University Students

Authors: Tuba Tekin, Nurcan Baglam, Emine Dincer

Abstract:

This study aimed to examine the effects of nutrition education received by university students on sustainable healthy eating behaviors and adherence to the Mediterranean diet. The 2nd, 3rd, and 4th-grade university students studying at the Faculty of Health Sciences, Nutrition and Dietetics, Midwifery, Nursing, Physical Therapy, and Rehabilitation departments of universities in Turkey were included in the study. Students' adherence to the Mediterranean diet was evaluated using the Mediterranean Diet Adherence Scale, and their sustainable and healthy eating behaviors were evaluated using the Sustainable and Healthy Eating Behaviors Scale. In addition, the body weight and height of the students were measured by the researchers, and the Body Mass Index (BMI) value was calculated. A total of 181 students, 85 of whom were studying in the Department of Nutrition and Dietetics and 96 of whom were educated in other departments, were included in the study; 75.7% of the students in the sample are female, while 24.3% are male. The average body weight of the students was 61.17 ± 10.87 kg, and the average BMI was 22.04 ± 3.40 kg/m2. While the mean score of the Mediterranean Diet Adherence Scale was 6.72 ± 1.84, in the evaluation of adherence to the Mediterranean diet, it was determined that 25.4% of the students had poor adherence and 66.9% needed improvement. When the adherence scores of students who received and did not receive nutrition education were compared, it was discovered that the students who received nutrition education had a higher score (p < 0.05). Students who received nutrition education had a higher total score on the Sustainable and Healthy Eating Behaviors scale (p < 0.05). A moderately positive correlation was found between the Sustainable and Healthy Eating Behaviors scale total score and the Mediterranean Diet Adherence scores (p < 0.05). As a result of the linear regression analysis, it was revealed that a 1-unit increase in the Mediterranean diet adherence score would result in a 1.3-point increase in the total score of the Sustainable and Healthy Eating Behaviors scale. Sustainable and healthy diets are important for improving and developing health and the prevention of diseases. The Mediterranean diet is defined as a sustainable diet model. The findings revealed the relationship between the Mediterranean diet and sustainable nutrition and showed that nutrition education increased knowledge and awareness about sustainable nutrition and increased adherence to the Mediterranean diet. For this reason, courses or seminars on sustainable nutrition can be organized during educational periods.

Keywords: Healthy eating, Mediterranean diet, nutrition education, sustainable nutrition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315
161 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova

Abstract:

In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why the most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best coppermanganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in two stage continuous flow equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions closest possible to the industrial. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area & pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu- Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.

Keywords: Supported copper-manganese catalysts, CO and VOCs oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
160 Reduced Rule Based Fuzzy Logic Controlled Isolated Bidirectional Converter Operating in Extended Phase Shift Control for Bidirectional Energy Transfer

Authors: Anupam Kumar, Abdul Hamid Bhat, Pramod Agarwal

Abstract:

Bidirectional energy transfer capability with high efficiency and reduced cost is fast gaining prominence in the central part of a lot of power conversion systems in Direct Current (DC) microgrid. Preferably, under the economics constraints, these systems utilise a single high efficiency power electronics conversion system and a dual active bridge converter. In this paper, modeling and performance of Dual Active Bridge (DAB) converter with Extended Phase Shift (EPS) is evaluated with two batteries on both sides of DC bus and bidirectional energy transfer is facilitated and this is further compared with the Single Phase Shift (SPS) mode of operation. Optimum operating zone is identified through exhaustive simulations using MATLAB/Simulink and SimPowerSystem software. Reduced rules based fuzzy logic controller is implemented for closed loop control of DAB converter. The control logic enables the bidirectional energy transfer within the batteries even at lower duty ratios. Charging and discharging of batteries is supervised by the fuzzy logic controller. State of charge, current and voltage for both the batteries are plotted in the battery characteristics. Power characteristics of batteries are also obtained using MATLAB simulations.

Keywords: Fuzzy logic controller, rule base, membership functions, dual active bridge converter, bidirectional power flow, duty ratio, extended phase shift, state of charge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
159 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks

Authors: Y. Harold Robinson, M. Rajaram

Abstract:

Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.

Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
158 A Variety of Meteorological and Geographical Characteristics Effects on Watershed Responses to a Storm Event

Authors: Wen Hui Kuan, Chia Ling Chang, Pei Shan Lui

Abstract:

The Chichiawan stream in the Wulin catchment in Taiwan is the natural habitat of Formosan landlocked salmon. Human and agriculture activities gradually worsen water quality and impact the fish habitat negatively. To protect and manage Formosan landlocked salmon habitat, it is important to understand a variety land-uses affect on the watershed responses to storms. This study discusses watershed responses to the dry-day before a storm event and a variety of land-uses in the Wulin catchment. Under the land-use planning in the Wulin catchment, the peak flows during typhoon events do not have noticeable difference. However, the nutrient exports can be highly reduced under the strategies of restraining agriculture activities. Due to the higher affinity of P for soil than that of N, the exports of TN from overall Wuling catchment were much greater than Ortho-P. Agriculture mainly centralized in subbasin A, which is the important source of nutrients in nonpoint source discharge. The subbasin A supplied about 26% of the TN and 32% of the Ortho-P discharge in 2004, despite the fact it only covers 19% area of the Wuling catchment. The subbasin analysis displayed that the agricultural subbasin A exports higher nutrients per unit area than other forest subbasins. Additionally, the agricultural subbasin A contributed a higher percentage to total Ortho-P exports compares to TN. The results of subbasin analysis might imply the transport of Ortho-P was similar to the particulate matter which was mainly influenced by the runoff and affected by the desorption from soil particles while the TN (dominated as nitrate-N) was mainly influenced by base-flow.

Keywords: Chiachiawan stream, Formosan landlocked salmon, modeling, typhoon, watershed response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
157 Stakeholder Analysis: Who are the Key Actorsin Establishing and Developing Thai Independent Consumer Organizations?

Authors: P. Ondee, S. Pannarunothai

Abstract:

In Thailand, both the 1997 and the current 2007 Thai Constitutions have mentioned the establishment of independent organizations as a new mechanism to play a key role in proposing policy recommendations to national decision-makers in the interest of collective consumers. Over the last ten years, no independent organizations have yet been set up. Evidently, nobody could point out who should be key players in establishing provincial independent consumer bodies. The purpose of this study was to find definitive stakeholders in establishing and developing independent consumer bodies in a Thai context. This was a cross-sectional study between August and September 2007, using a postal questionnaire with telephone follow-up. The questionnaire was designed and used to obtain multiple stakeholder assessment of three key attributes (power, interest and influence). Study population was 153 stakeholders associated with policy decision-making, formulation and implementation processes of civil-based consumer protection in pilot provinces. The population covered key representatives from five sectors (academics, government officers, business traders, mass media and consumer networks) who participated in the deliberative forums at 10 provinces. A 49.7% response rate was achieved. Data were analyzed, comparing means of three stakeholder attributes and classification of stakeholder typology. The results showed that the provincial health officers were the definitive stakeholders as they had legal power, influence and interest in establishing and sustaining the independent consumer bodies. However, only a few key representatives of the provincial health officers expressed their own paradigm on the civil-based consumer protection. Most provincial health officers put their own standpoint of building civic participation at only a plan-implementation level. For effective policy implementation by the independent consumer bodies, the Thai government should provide budgetary support for the operation of the provincial health officers with their paradigm shift as well as their own clarified standpoint on corporate governance.

Keywords: Civic participation, civil society, consumerprotection, independent organization, policy decision-making, stakeholder analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
156 Impact of Interface Soil Layer on Groundwater Aquifer Behaviour

Authors: Hayder H. Kareem, Shunqi Pan

Abstract:

The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes.

Keywords: Al-Najaf City, groundwater aquifer behaviour, groundwater modelling, interface soil layer, Visual MODFLOW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
155 Application of HSA and GA in Optimal Placement of FACTS Devices Considering Voltage Stability and Losses

Authors: A. Parizad, A. Khazali, M. Kalantar

Abstract:

Voltage collapse is instability of heavily loaded electric power systems that cause to declining voltages and blackout. Power systems are predicated to become more heavily loaded in the future decade as the demand for electric power rises while economic and environmental concerns limit the construction of new transmission and generation capacity. Heavily loaded power systems are closer to their stability limits and voltage collapse blackouts will occur if suitable monitoring and control measures are not taken. To control transmission lines, it can be used from FACTS devices. In this paper Harmony search algorithm (HSA) and Genetic Algorithm (GA) have applied to determine optimal location of FACTS devices in a power system to improve power system stability. Three types of FACTS devices (TCPAT, UPFS, and SVC) have been introduced. Bus under voltage has been solved by controlling reactive power of shunt compensator. Also a combined series-shunt compensators has been also used to control transmission power flow and bus voltage simultaneously. Different scenarios have been considered. First TCPAT, UPFS, and SVC are placed solely in transmission lines and indices have been calculated. Then two types of above controller try to improve parameters randomly. The last scenario tries to make better voltage stability index and losses by implementation of three types controller simultaneously. These scenarios are executed on typical 34-bus test system and yields efficiency in improvement of voltage profile and reduction of power losses; it also may permit an increase in power transfer capacity, maximum loading, and voltage stability margin.

Keywords: FACTS Devices, Voltage Stability Index, optimal location, Heuristic methods, Harmony search, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
154 An Experimental Investigation of Petrodiesel and Cotton Seed Biodiesel (CSOME) in Diesel Engine

Authors: P. V. Rao, Jaedaa Abdulhamid

Abstract:

Biodiesel is widely investigated to solve the twin problem of depletion of fossil fuel and environmental degradation. The main objective of the present work is to compare performance, emissions, and combustion characteristics of biodiesel derived from cotton seed oil in a diesel engine with the baseline results of petrodiesel fuel. Tests have been conducted on a single cylinder, four stroke CIDI diesel engine with a speed of 1500 rpm and a fixed compression ratio of 17.5 at different load conditions. The performance parameters evaluated include brake thermal efficiency, brake specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency, and exhaust gas temperature. Regarding combustion study, cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, mass fraction burned, and fuel line pressure were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen, and smoke opacity were also measured by a smoke meter and an exhaust gas analyzer and compared with baseline results. The brake thermal efficiency of cotton seed oil methyl ester (CSOME) was lower than that of petrodiesel and brake specific fuel consumption was found to be higher. However, biodiesel resulted in the reduction of carbon dioxide, un-burnt hydrocarbon, and smoke opacity at the expense of nitrogen oxides. Carbon monoxide emissions for biodiesel was higher at maximum output power. It has been found that the combustion characteristics of cotton seed oil methyl ester closely followed those of standard petrodiesel. The experimental results suggested that biodiesel derived from cotton seed oil could be used as a good substitute to petrodiesel fuel in a conventional diesel without any modification.

Keywords: Diesel engine, Cotton seed, Biodiesel, performance, combustion, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
153 Designing an Editorialization Environment for Repeatable Self-Correcting Exercises

Authors: M. Kobylanski, D. Buskulic, P.-H. Duron, D. Revuz, F. Ruggieri, E. Sandier, C. Tijus

Abstract:

In order to design a cooperative e-learning platform, we observed teams of Teacher [T], Computer Scientist [CS] and exerciser's programmer-designer [ED] cooperating for the conception of a self-correcting exercise, but without the use of such a device in order to catch the kind of interactions a useful platform might provide. To do so, we first run a task analysis on how T, CS and ED should be cooperating in order to achieve, at best, the task of creating and implementing self-directed, self-paced, repeatable self-correcting exercises (RSE) in the context of open educational resources. The formalization of the whole process was based on the “objectives, activities and evaluations” theory of educational task analysis. Second, using the resulting frame as a “how-to-do it” guide, we run a series of three contrasted Hackathon of RSE-production to collect data about the cooperative process that could be later used to design the collaborative e-learning platform. Third, we used two complementary methods to collect, to code and to analyze the adequate survey data: the directional flow of interaction among T-CS-ED experts holding a functional role, and the Means-End Problem Solving analysis. Fourth, we listed the set of derived recommendations useful for the design of the exerciser as a cooperative e-learning platform. Final recommendations underline the necessity of building (i) an ecosystem that allows to sustain teams of T-CS-ED experts, (ii) a data safety platform although offering accessibility and open discussion about the production of exercises with their resources and (iii) a good architecture allowing the inheritance of parts of the coding of any exercise already in the data base as well as fast implementation of new kinds of exercises along with their associated learning activities.

Keywords: Distance open educational resources, pedagogical alignment, self-correcting exercises, teacher’s involvement, team roles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518
152 Evaluating the Perception of Roma in Europe through Social Network Analysis

Authors: Giulia I. Pintea

Abstract:

The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.

Keywords: Applied mathematics, oppression, Roma people, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
151 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs

Authors: K. N. Dinesh Babu, P. K. Gargava

Abstract:

Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.

Keywords: Differential protection, intelligent electronic device (IED), 2nd harmonic, inrush inhibit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
150 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: Bubble column reactor, CO2 capture, Response Surface Methodology, water desalination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
149 Technical Aspects of Closing the Loop in Depth-of-Anesthesia Control

Authors: Gorazd Karer

Abstract:

When performing a diagnostic procedure or surgery in general anesthesia (GA), a proper introduction and dosing of anesthetic agents is one of the main tasks of the anesthesiologist. That being said, depth of anesthesia (DoA) also seems to be a suitable process for closed-loop control implementation. To implement such a system, one must be able to acquire the relevant signals online and in real-time, as well as stream the calculated control signal to the infusion pump. However, during a procedure, patient monitors and infusion pumps are purposely unable to connect to an external (possibly medically unapproved) device for safety reasons, thus preventing closed-loop control. This paper proposes a conceptual solution to the aforementioned problem. First, it presents some important aspects of contemporary clinical practice. Next, it introduces the closed-loop-control-system structure and the relevant information flow. Focusing on transferring the data from the patient to the computer, it presents a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. Furthermore, it introduces a User-Datagram-Protocol-based (UDP-based) communication method that can be used for transmitting the calculated anesthetic inflow to the infusion pump. The proposed system is independent of medical-device manufacturer and is implemented in MATLAB-Simulink, which can be conveniently used for DoA control implementation. The proposed scheme has been tested in a simulated GA setting and is ready to be evaluated in an operating theatre. However, the proposed system is only a step towards a proper closed-loop control system for DoA, which could routinely be used in clinical practice.

Keywords: Closed-loop control, Depth of Anesthesia, DoA, optical signal acquisition, Patient State index, PSi, UDP communication protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
148 Convective Heat Transfer of Internal Electronic Components in a Headlight Geometry

Authors: Jan Langebach, Peter Fischer, Christian Karcher

Abstract:

A numerical study is presented on convective heat transfer in enclosures. The results are addressed to automotive headlights containing new-age light sources like Light Emitting Diodes (LED). The heat transfer from the heat source (LED) to the enclosure walls is investigated for mixed convection as interaction of the forced convection flow from an inlet and an outlet port and the natural convection at the heat source. Unlike existing studies, inlet and outlet port are thermally coupled and do not serve to remove hot fluid. The input power of the heat source is expressed by the Rayleigh number. The internal position of the heat source, the aspect ratio of the enclosure, and the inclination angle of one wall are varied. The results are given in terms of the global Nusselt number and the enclosure Nusselt number that characterize the heat transfer from the source and from the interior fluid to the enclosure walls, respectively. It is found that the heat transfer from the source to the fluid can be maximized if the source is placed in the main stream from the inlet to the outlet port. In this case, the Reynolds number and heat source position have the major impact on the heat transfer. A disadvantageous position has been found where natural and forced convection compete each other. The overall heat transfer from the source to the wall increases with increasing Reynolds number as well as with increasing aspect ratio and decreasing inclination angle. The heat transfer from the interior fluid to the enclosure wall increases upon decreasing the aspect ratio and increasing the inclination angle. This counteracting behaviour is caused by the variation of the area of the enclosure wall. All mixed convection results are compared to the natural convection limit.

Keywords: Enclosure, heat source, heat transfer, mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
147 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time, and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration-based analysis and wear prediction. In present study, a simulation model was developed to investigate the bearing wear behaviour, resulting because of different operating conditions, to complement the vibration analysis. In current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. In addition, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journals and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 μm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behaviour and on the other hand it also helps to establish a co-relation between wear based and vibration based analysis. Therefore, the model provides a cost effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: Condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300