Search results for: 3D EEG model.
3900 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube
Authors: Abolfazl Hosseinkhani, Sepehr Sanaye
Abstract:
Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.
Keywords: Vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6023899 An Empirical Model to Calculate the Threads Stripping of a Bolt Installed in a Tapped Part
Authors: Manuel Martínez Martínez, Daniel Zavala Ríos
Abstract:
To determine the length of engagement threads of a bolt installed in a tapped part in order to avoid the threads stripping remains a very current problem in the design of the thread assemblies. It does not exist a calculation method formalized for the cases where the bolt is screwed directly in a ductile material. In this article, we study the behavior of the threads stripping of a loaded assembly by using a modelling by finite elements and a rupture criterion by damage. This modelling enables us to study the different parameters likely to influence the behavior of this bolted connection. We study in particular, the influence of couple of materials constituting the connection, of the bolt-s diameter and the geometrical characteristics of the tapped part, like the external diameter and the length of engagement threads. We established an experiments design to know the most significant parameters. That enables us to propose a simple expression making possible to calculate the resistance of the threads whatever the metallic materials of the bolt and the tapped part. We carried out stripping tests in order to validate our model. The estimated results are very close to those obtained by the tests.
Keywords: Bolt, damage, plasticity, stripping, thread assemblies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52923898 A Reusability Evaluation Model for OO-Based Software Components
Authors: Parvinder S. Sandhu, Hardeep Singh
Abstract:
The requirement to improve software productivity has promoted the research on software metric technology. There are metrics for identifying the quality of reusable components but the function that makes use of these metrics to find reusability of software components is still not clear. These metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the component and hence improve the productivity due to probabilistic increase in the reuse level. CK metric suit is most widely used metrics for the objectoriented (OO) software; we critically analyzed the CK metrics, tried to remove the inconsistencies and devised the framework of metrics to obtain the structural analysis of OO-based software components. Neural network can learn new relationships with new input data and can be used to refine fuzzy rules to create fuzzy adaptive system. Hence, Neuro-fuzzy inference engine can be used to evaluate the reusability of OO-based component using its structural attributes as inputs. In this paper, an algorithm has been proposed in which the inputs can be given to Neuro-fuzzy system in form of tuned WMC, DIT, NOC, CBO , LCOM values of the OO software component and output can be obtained in terms of reusability. The developed reusability model has produced high precision results as expected by the human experts.Keywords: CK-Metric, ID3, Neuro-fuzzy, Reusability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18263897 Factors Influencing the Continuance Usage of Online Mobile Payment Apps: A Case Study of WECHAT Users in China
Authors: Isaac Kofi Mensah, Jianing Mi, Feng Cheng
Abstract:
This research paper seeks to investigate the factors determining the continuance usage of online mobile payment applications among WECHAT users in China. Technology Acceptance Model (TAM) and the Diffusion of Innovation (DOI) theory would both be applied as the theoretical foundation for this study. A developed instrument would be administered to the targeted sample of 1000 WECHAT Users in the City of Harbin, China, through an online questionnaire administration platform. Factors such as perceived usefulness, perceived ease of use, perceived service quality, social influence, trust in the internet, internet self-efficacy, relative advantage, compatibility, and complexity would be explored to determine its significant impact on the continuance intention to use mobile payment apps. This study is at the development and implementation stage. The successful completion of this research article would not only provide an insightful understanding of the factors influencing the decision of WECHAT users in China to use mobile payment applications but also enrich the e-commerce adoption literature.
Keywords: Diffusion of innovation (DOI), e-commerce, mobile payment, technology acceptance model (TAM), WECHAT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16323896 Measuring Process Component Design on Achieving Managerial Goals
Authors: Eakong Atiptamvaree, Twittie Senivongse
Abstract:
Process-oriented software development is a new software development paradigm in which software design is modeled by a business process which is in turn translated into a process execution language for execution. The building blocks of this paradigm are software units that are composed together to work according to the flow of the business process. This new paradigm still exhibits the characteristic of the applications built with the traditional software component technology. This paper discusses an approach to apply a traditional technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses, and these process components can be reused to design the business processes of other application domains. The decomposition considers five managerial goals, namely cost effectiveness, ease of assembly, customization, reusability, and maintainability. The paper presents how to design or decompose process components from a business process model and measure some technical features of the design that would affect the managerial goals. A comparison between the measurement values from different designs can tell which process component design is more appropriate for the managerial goals that have been set. The proposed approach can be applied in Web Services environment which accommodates process-oriented software development.Keywords: Business Process Model, Managerial Goals, ProcessComponent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15223895 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.
Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4153894 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette
Authors: M.K. Bhuyan, Aragala Jagan.
Abstract:
Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19183893 Near Shore Wave Manipulation for Electricity Generation
Authors: K. D. R. Jagath-Kumara, D. D. Dias
Abstract:
The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging, and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the first approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results, and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque, and the angular velocity.Keywords: Near-shore sea waves, Renewable energy, Wave energy conversion, Wave manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20013892 Computational Study of Blood Flow Analysis for Coronary Artery Disease
Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey
Abstract:
The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.
Keywords: Computational fluid dynamics, hemodynamics, velocity, strain rate, wall pressure, wall shear stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14873891 Simulation for Squat Exercise of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, feedback delay and signal noise were added to a simulation model of an active controlled vibration isolation and stabilization system to regulate the movement of the exercise platform. Two additional simulation tools used in this study were Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. Simulation results obtained from these three tools were very similar. All simulation results support the hypothesis that an active controlled vibration isolation and stabilization system outperforms a passive controlled system even with the addition of feedback delay and signal noise to the active controlled system. In this paper, squat exercise was used in creating excited force to the simulation model. The exciter force from squat exercise was calculated from motion capture of an exerciser. The simulation results demonstrate much greater transmitted force reduction in the active controlled system than the passive controlled system.
Keywords: Astronaut, counterweight, stabilization, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4743890 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing
Authors: Fazl Ullah, Rahmat Ullah
Abstract:
This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.
Keywords: Fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963889 Numerical Study of Steel Structures Responses to External Explosions
Authors: Mohammad Abdallah
Abstract:
Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.
Keywords: Steel structure, blast load, terrorist attacks, charge weight, damage level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7853888 Impact of Government Spending on Private Consumption and on the Economy: Case of Thailand
Authors: Paitoon Kraipornsak
Abstract:
The recent global financial problem urges government to play role in stimulating the economy due to the fact that private sector has little ability to purchase during the recession. A concerned question is whether the increased government spending crowds out private consumption and whether it helps stimulate the economy. If the government spending policy is effective; the private consumption is expected to increase and can compensate the recent extra government expense. In this study, the government spending is categorized into government consumption spending and government capital spending. The study firstly examines consumer consumption along the line with the demand function in microeconomic theory. Three categories of private consumption are used in the study. Those are food consumption, non food consumption, and services consumption. The dynamic Almost Ideal Demand System of the three categories of the private consumption is estimated using the Vector Error Correction Mechanism model. The estimated model indicates the substituting effects (negative impacts) of the government consumption spending on budget shares of private non food consumption and of the government capital spending on budget share of private food consumption, respectively. Nevertheless the result does not necessarily indicate whether the negative effects of changes in the budget shares of the non food and the food consumption means fallen total private consumption. Microeconomic consumer demand analysis clearly indicates changes in component structure of aggregate expenditure in the economy as a result of the government spending policy. The macroeconomic concept of aggregate demand comprising consumption, investment, government spending (the government consumption spending and the government capital spending), export, and import are used to estimate for their relationship using the Vector Error Correction Mechanism model. The macroeconomic study found no effect of the government capital spending on either the private consumption or the growth of GDP while the government consumption spending has negative effect on the growth of GDP. Therefore no crowding out effect of the government spending is found on the private consumption but it is ineffective and even inefficient expenditure as found reducing growth of the GDP in the context of Thailand.Keywords: government consumption spending, governmentcapital spending, private consumption on food, non food, andservices, Vector Error Correction Mechanism, Almost Ideal DemandSystem, substitution effect, complementary effect, consumer demand, aggregate demand
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18383887 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO
Authors: Youcef Bekakra, Djilani Ben attous
Abstract:
In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.
Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20213886 Investigation of the Physical Computing in Computational Thinking Practices, Computer Programming Concepts and Self-Efficacy for Crosscutting Ideas in STEM Content Environments
Authors: Sarantos Psycharis
Abstract:
Physical Computing, as an instructional model, is applied in the framework of the Engineering Pedagogy to teach “transversal/cross-cutting ideas” in a STEM content approach. Labview and Arduino were used in order to connect the physical world with real data in the framework of the so called Computational Experiment. Tertiary prospective engineering educators were engaged during their course and Computational Thinking (CT) concepts were registered before and after the intervention across didactic activities using validated questionnaires for the relationship between self-efficacy, computer programming, and CT concepts when STEM content epistemology is implemented in alignment with the Computational Pedagogy model. Results show a significant change in students’ responses for self-efficacy for CT before and after the instruction. Results also indicate a significant relation between the responses in the different CT concepts/practices. According to the findings, STEM content epistemology combined with Physical Computing should be a good candidate as a learning and teaching approach in university settings that enhances students’ engagement in CT concepts/practices.
Keywords: STEM, computational thinking, physical computing, Arduino, Labview, self-efficacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8263885 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks
Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla
Abstract:
A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.Keywords: Clustering coefficient, criminology, generalized, regular network d-dimensional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16483884 Probabilistic Modeling of Network-induced Delays in Networked Control Systems
Authors: Manoj Kumar, A.K. Verma, A. Srividya
Abstract:
Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.Keywords: NCS (networked control system), delay analysis, response-time distribution, worst-case delay, CAN, MIL-STD-1553B, redundancy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17793883 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition
Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover
Abstract:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.
Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30783882 Numerical Investigation of Non-Newtonians Fluids Flows between Two Rotating Cylinders Using Lattice Boltzmann Method
Authors: S. Khali, R. Nebbali, K. Bouhadef
Abstract:
A numerical investigation is performed for non Newtonian fluids flow between two concentric cylinders. The D2Q9 lattice Boltzmann model developed from the Bhatangar-Gross-Krook (LBGK) approximation is used to obtain the flow field for fluids obeying to the power-law model. The inner and outer cylinders rotate in the same and the opposite direction while the end walls are maintained at rest. The combined effects of the Reynolds number (Re) of the inner and outer cylinders, the radius ratio (η) as well as the power-law index (n) on the flow characteristics are analyzed for an annular space of a finite aspect ratio (Γ). Two flow modes are obtained: a primary mode (laminar stable regime) and a secondary mode (laminar unstable regime). The so obtained flow structures are different from one mode to another. The transition critical Reynolds number Rec from the primary to the secondary mode is analyzed for the co-courant and counter-courant flows. This critical value increases as n increases. The prediction of the swirling flow of non Newtonians fluids in axisymmetric geometries is shown in the present work.
Keywords: Taylor-Couette flows, non Newtonian fluid, Lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27393881 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database
Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala
Abstract:
This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.
Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15533880 A Numerical Study of Seismic Response of Shallow Square Tunnels in Two-Layered Ground
Authors: Mahmoud Hassanlourad, Mehran Naghizadehrokni, Vahid Molaei
Abstract:
In this study, the seismic behavior of a shallow tunnel with square cross section is investigated in a two layered and elastic heterogeneous environment using numerical method. To do so, FLAC finite difference software was used. Behavioral model of the ground and tunnel structure was assumed linear elastic. Dynamic load was applied to the model for 0.2 seconds from the bottom in form of a square pulse with maximum acceleration of 1 m/s2. The interface between the two layers was considered at three different levels of crest, middle, and bottom of the tunnel. The stiffness of the two upper and lower layers was considered to be varied from 10 MPa to 1000 MPa. Deformation of cross section of the tunnel due to dynamic load propagation, as well as the values of axial force and bending moment created in the tunnel structure, were examined in the three states mentioned above. The results of analyses show that heterogeneity of the environment, its stratification, and positioning of the interface of the two layers with respect to tunnel height and the stiffness ratio of the two layers have significant effects on the value of bending moment, axial force, and distortion of tunnel cross-section.Keywords: Dynamic analysis, shallow-buried tunnel, two-layered ground.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7773879 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17243878 Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Cd (II) and Pb (II) from Aqueous Solution Using a Spore Forming Bacillus Isolated from Wastewater of a Leather Factory
Authors: Sh. Kianfar, A. Moheb, H. Ghaforian
Abstract:
The equilibrium, thermodynamics and kinetics of the biosorption of Cd (II) and Pb(II) by a Spore Forming Bacillus (MGL 75) were investigated at different experimental conditions. The Langmuir and Freundlich, and Dubinin-Radushkevich (D-R) equilibrium adsorption models were applied to describe the biosorption of the metal ions by MGL 75 biomass. The Langmuir model fitted the equilibrium data better than the other models. Maximum adsorption capacities q max for lead (II) and cadmium (II) were found equal to 158.73mg/g and 91.74 mg/g by Langmuir model. The values of the mean free energy determined with the D-R equation showed that adsorption process is a physiosorption process. The thermodynamic parameters Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes were also calculated, and the values indicated that the biosorption process was exothermic and spontaneous. Experiment data were also used to study biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients were calculated and discussed. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.Keywords: biosorption, kinetics, Metal ion removal, thermodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20653877 Blind Image Deconvolution by Neural Recursive Function Approximation
Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu
Abstract:
This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.
Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20693876 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study, climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One of models (Discrete Wavelet artificial Neural Network) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and input parameters to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 t0 105 cm. Furthermore, the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: Climate change scenarios, sea-level rise, strait of Hormuz, artificial neural network, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24333875 Prediction of Slump in Concrete using Artificial Neural Networks
Authors: V. Agrawal, A. Sharma
Abstract:
High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networks (NN) to predict the slump in High Strength Concrete (HSC). Neural Network models is constructed, trained and tested using the available test data of 349 different concrete mix designs of High Strength Concrete (HSC) gathered from a particular Ready Mix Concrete (RMC) batching plant. The most versatile Neural Network model is selected to predict the slump in concrete. The data used in the Neural Network models are arranged in a format of eight input parameters that cover the Cement, Fly Ash, Sand, Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, Super-Plasticizer and Water/Binder ratio. Furthermore, to test the accuracy for predicting slump in concrete, the final selected model is further used to test the data of 40 different concrete mix designs of High Strength Concrete (HSC) taken from the other batching plant. The results are compared on the basis of error function (or performance function).Keywords: Artificial Neural Networks, Concrete, prediction ofslump, slump in concrete
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36043874 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19773873 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.
Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5243872 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces
Authors: S. Matour, M. Mahdavinejad, R. Fayaz
Abstract:
Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.
Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12673871 Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution
Authors: H. C. O. Reis, A. S. Cossolin, B. A. P. Santos, K. C. Castro, G. M. Pereira, V. C. Silva, P. T. Sousa Jr, E. L. Dall’Oglio, L. G. Vasconcelos, E. B. Morais
Abstract:
In this study, malt bagasse, a low-cost waste biomass, was tested as a biosorbent to remove the cationic dye Malachite green (MG) from aqueous solution. Batch biosorption experiments were investigated as functions of different experimental parameters such as initial pH, salt (NaCl) concentration, contact time, temperature and initial dye concentration. Higher removal rates of MG were obtained at pH 8 and 10. The equilibrium and kinetic studies suggest that the biosorption follows Langmuir isotherm and the pseudo-second-order model. The maximum monolayer adsorption capacity was estimated at 117.65 mg/g (at 45 °C). According to Dubinin–Radushkevich (D-R) isotherm model, biosorption of MG onto malt bagasse occurs physically. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy indicated that the MG biosorption onto malt bagasse is spontaneous and endothermic. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance under high salt concentrations. It can be concluded that malt bagasse waste has potential for application as biosorbent for removal of MG from aqueous solution.
Keywords: Color removal, kinetic and isotherm studies, thermodynamic parameters, FTIR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990