Search results for: hybrid genetic algorithm.
826 An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines
Authors: Charalampos Saridakis, Stelios Tsafarakis
Abstract:
Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.Keywords: Clean-fuel vehicles, product line design, conjoint analysis, choice experiment, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999825 Towards for Admission Control in WIMAX Relay Station Mesh Network for Mobile Stations out of Coverage Using Ad-Hoc
Authors: Anas Majeed, A. A. Zaidan, B. B. Zaidan, Laiha Mat Kiah
Abstract:
WIMAX relay station mesh network has been approved by IEEE 802.16j as a standard to provide a highly data rate transmission, the RS was implemented to extend the coverage zone of the BS, for instance the MSs previously were out of the coverage of the BS they become in the coverage of the RS, therefore these MSs can have Admission control from the BS through the RS. This paper describe a problem in the mesh network Relay station, for instance the problem of how to serve the mobile stations (MSs) which are out of the Relay station coverage. This paper also proposed a solution for mobile stations out of the coverage of the WIMAX Relay stations mesh Network. Therefore Ad-hoc network defined as a solution by using its admission control schema and apply it on the mobiles inside and outside the Relay station coverage.
Keywords: WIMAX, relay station, mesh network, ad-hoc, WiFi, generic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758824 Remaining Useful Life Prediction Using Elliptical Basis Function Network and Markov Chain
Authors: Yi Yu, Lin Ma, Yong Sun, Yuantong Gu
Abstract:
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.Keywords: Elliptical Basis Function Network, Markov Chain, Missing Covariates, Remaining Useful Life
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662823 Face Recognition Using Morphological Shared-weight Neural Networks
Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani
Abstract:
We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516822 A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion
Authors: Aki Happonen, Adrian Burian, Erwin Hemming
Abstract:
Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.Keywords: Cholesky Decomposition, Fixed-point, Matrix inversion, Reconfigurable processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694821 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434820 Using Historical Data for Stock Prediction of a Tech Company
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.
Keywords: Finance, machine learning, opening price, stock market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662819 Low-Complexity Channel Estimation Algorithm for MIMO-OFDM Systems
Authors: Ali Beydoun, Hamzé H. Alaeddine
Abstract:
One of the main challenges in MIMO-OFDM system to achieve the expected performances in terms of data rate and robustness against multi-path fading channels is the channel estimation. Several methods were proposed in the literature based on either least square (LS) or minimum mean squared error (MMSE) estimators. These methods present high implementation complexity as they require the inversion of large matrices. In order to overcome this problem and to reduce the complexity, this paper presents a solution that benefits from the use of the STBC encoder and transforms the channel estimation process into a set of simple linear operations. The proposed method is evaluated via simulation in AWGN-Rayleigh fading channel. Simulation results show a maximum reduction of 6.85% of the bit error rate (BER) compared to the one obtained with the ideal case where the receiver has a perfect knowledge of the channel.Keywords: Channel estimation, MIMO, OFDM, STBC, CAZAC sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881818 Mutation Analysis of the ATP7B Gene in 43 Vietnamese Wilson’s Disease Patients
Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le, Chi V. Phan
Abstract:
Wilson’s disease (WD) is an autosomal recessive disorder of the copper metabolism, which is caused by a mutation in the copper-transporting P-type ATPase (ATP7B). The mechanism of this disease is the failure of hepatic excretion of copper to bile, and leads to copper deposits in the liver and other organs. The ATP7B gene is located on the long arm of chromosome 13 (13q14.3). This study aimed to investigate the gene mutation in the Vietnamese patients with WD, and make a presymptomatic diagnosis for their familial members. Forty-three WD patients and their 65 siblings were identified as having ATP7B gene mutations. Genomic DNA was extracted from peripheral blood samples; 21 exons and exon-intron boundaries of the ATP7B gene were analyzed by direct sequencing. We recognized four mutations ([R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G) in the sum of 20 detectable mutations, accounting for 87.2% of the total. Mutation S105* was determined to have a high rate (32.6%) in this study. The hotspot regions of ATP7B were found at exons 2, 16, and 8, and intron 14, in 39.6 %, 11.6 %, 9.3%, and 7 % of patients, respectively. Among nine homozygote/compound heterozygote siblings of the patients with WD, three individuals were determined as asymptomatic by screening mutations of the probands. They would begin treatment after diagnosis. In conclusion, 20 different mutations were detected in 43 WD patients. Of this number, four novel mutations were explored, including [R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G. The mutation S105* is the most prevalent and has been considered as a biomarker that can be used in a rapid detection assay for diagnosis of WD patients. Exons 2, 8, and 16, and intron 14 should be screened initially for WD patients in Vietnam. Based on risk profile for WD, genetic testing for presymptomatic patients is also useful in diagnosis and treatment.Keywords: ATP7B gene, mutation detection, presymptomatic diagnosis, Vietnamese Wilson’s disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708817 Impact of the Decoder Connection Schemes on Iterative Decoding of GPCB Codes
Authors: Fouad Ayoub, Mohammed Lahmer, Mostafa Belkasmi, El Houssine Bouyakhf
Abstract:
In this paper we present a study of the impact of connection schemes on the performance of iterative decoding of Generalized Parallel Concatenated block (GPCB) constructed from one step majority logic decodable (OSMLD) codes and we propose a new connection scheme for decoding them. All iterative decoding connection schemes use a soft-input soft-output threshold decoding algorithm as a component decoder. Numerical result for GPCB codes transmitted over Additive White Gaussian Noise (AWGN) channel are provided. It will show that the proposed scheme is better than Hagenauer-s scheme and Lucas-s scheme [1] and slightly better than the Pyndiah-s scheme.
Keywords: Generalized parallel concatenated block codes, OSMLD codes, threshold decoding, iterative decoding scheme, and performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746816 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback
Authors: Jung–Min Yang
Abstract:
Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.Keywords: Asynchronous sequential machines, corrective control, model matching, input/output control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479815 Adaptive Gaussian Mixture Model for Skin Color Segmentation
Authors: Reza Hassanpour, Asadollah Shahbahrami, Stephan Wong
Abstract:
Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.Keywords: Face detection, Segmentation, Tracking, Gaussian Mixture Model, Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415814 A Method for Analysis of Industrial Distributed Embedded Systems
Authors: Dmitry A. Mikoyelov
Abstract:
The paper presents a set of guidelines for analysis of industrial embedded distributed systems and introduces a mathematical model derived from these guidelines. In this study, the author examines a set of modern communication technologies that are or possibly can be used to build communication links between the subsystems of a distributed embedded system. An investigation of these guidelines results in a algorithm for analysis of specific use cases of target technologies. A goal of the paper acts as an important base for ongoing research on comparison of communication technologies. The author describes the principles of the model and presents results of the test calculations. Practical implementation of target technologies and empirical experiment data are based on a practical experience during the design and test of specific distributed systems in Latvian market.
Keywords: Distributed embedded system, analytical model, communication technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520813 Deterministic Method to Assess Kalman Filter Passive Ranging Solution Reliability
Authors: Ronald M. Yannone
Abstract:
For decades, the defense business has been plagued by not having a reliable, deterministic method to know when the Kalman filter solution for passive ranging application is reliable for use by the fighter pilot. This has made it hard to accurately assess when the ranging solution can be used for situation awareness and weapons use. To date, we have used ad hoc rules-of-thumb to assess when we think the estimate of the Kalman filter standard deviation on range is reliable. A reliable algorithm has been developed at BAE Systems Electronics & Integrated Solutions that monitors the Kalman gain matrix elements – and a patent is pending. The “settling" of the gain matrix elements relates directly to when we can assess the time when the passive ranging solution is within the 10 percent-of-truth value. The focus of the paper is on surface-based passive ranging – but the method is applicable to airborne targets as well.Keywords: Electronic warfare, extended Kalman filter (EKF), fighter aircraft, passive ranging, track convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064812 The Comparison of Parental Childrearing Styles and Anxiety in Children with Stuttering and Normal Population
Authors: Pegah Farokhzad
Abstract:
Family has a crucial role in maintaining the physical, social and mental health of the children. Most of the mental and anxiety problems of children reflect the complex interpersonal situations among family members, especially parents. In other words, anxiety problems of the children are correlated with deficit relationships of family members and improper childrearing styles. The parental child rearing styles leads to positive and negative consequences which affect the children’s mental health. Therefore, the present research was aimed to compare the parental childrearing styles and anxiety of children with stuttering and normal population. It was also aimed to study the relationship between parental child rearing styles and anxiety of children. The research sample included 54 boys with stuttering and 54 normal boys who were selected from the children (boys) of Tehran, Iran in the age range of 5 to 8 years in 2013. In order to collect data, Baum-rind Childrearing Styles Inventory and Spence Parental Anxiety Inventory were used. Appropriate descriptive statistical methods and multivariate variance analysis and t test for independent groups were used to test the study hypotheses. Statistical data analyses demonstrated that there was a significant difference between stuttering boys and normal boys in anxiety (t = 7.601, p< 0.01); but there was no significant difference between stuttering boys and normal boys in parental childrearing styles (F = 0.129). There was also not found significant relationship between parental childrearing styles and children anxiety (F = 0.135, p< 0.05). It can be concluded that the influential factors of children’s society are parents, school, teachers, peers and media. So, parental childrearing styles are not the only influential factors on anxiety of children, and other factors including genetic, environment and child experiences are effective in anxiety as well. Details are discussed.Keywords: Anxiety, Childrearing Styles, Stuttering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073811 Model Predictive Control of Gantry Crane with Input Nonlinearity Compensation
Authors: Steven W. Su , Hung Nguyen, Rob Jarman, Joe Zhu, David Lowe, Peter McLean, Shoudong Huang, Nghia T. Nguyen, Russell Nicholson, Kaili Weng
Abstract:
This paper proposed a nonlinear model predictive control (MPC) method for the control of gantry crane. One of the main motivations to apply MPC to control gantry crane is based on its ability to handle control constraints for multivariable systems. A pre-compensator is constructed to compensate the input nonlinearity (nonsymmetric dead zone with saturation) by using its inverse function. By well tuning the weighting function matrices, the control system can properly compromise the control between crane position and swing angle. The proposed control algorithm was implemented for the control of gantry crane system in System Control Lab of University of Technology, Sydney (UTS), and achieved desired experimental results.Keywords: Model Predictive Control, Control constraints, Input nonlinearity compensation, Overhead gantry crane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987810 Inter-frame Collusion Attack in SS-N Video Watermarking System
Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi
Abstract:
Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.
Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496809 Design of an M-Channel Cosine Modulated Filter Bank by New Cosh Window Based FIR Filters
Authors: Jyotsna Ogale, Alok Jain
Abstract:
In this paper newly reported Cosh window function is used in the design of prototype filter for M-channel Near Perfect Reconstruction (NPR) Cosine Modulated Filter Bank (CMFB). Local search optimization algorithm is used for minimization of distortion parameters by optimizing the filter coefficients of prototype filter. Design examples are presented and comparison has been made with Kaiser window based filterbank design of recently reported work. The result shows that the proposed design approach provides lower distortion parameters and improved far-end suppression than the Kaiser window based design of recent reported work.Keywords: Window function, Cosine modulated filterbank, Local search optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600808 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm
Authors: Muhammad Amjad Sohail, Rizwan Ullah
Abstract:
This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393807 The Modified Eigenface Method using Two Thresholds
Authors: Yan Ma, ShunBao Li
Abstract:
A new approach is adopted in this paper based on Turk and Pentland-s eigenface method. It was found that the probability density function of the distance between the projection vector of the input face image and the average projection vector of the subject in the face database, follows Rayleigh distribution. In order to decrease the false acceptance rate and increase the recognition rate, the input face image has been recognized using two thresholds including the acceptance threshold and the rejection threshold. We also find out that the value of two thresholds will be close to each other as number of trials increases. During the training, in order to reduce the number of trials, the projection vectors for each subject has been averaged. The recognition experiments using the proposed algorithm show that the recognition rate achieves to 92.875% whilst the average number of judgment is only 2.56 times.Keywords: Eigenface, Face Recognition, Threshold, Rayleigh Distribution, Feature Extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495806 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method
Authors: Yanan Yang, Zhigang Wang, Xiang Chen
Abstract:
This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801805 Walsh-Hadamard Transform for Facial Feature Extraction in Face Recognition
Authors: M. Hassan, I. Osman, M. Yahia
Abstract:
This Paper proposes a new facial feature extraction approach, Wash-Hadamard Transform (WHT). This approach is based on correlation between local pixels of the face image. Its primary advantage is the simplicity of its computation. The paper compares the proposed approach, WHT, which was traditionally used in data compression with two other known approaches: the Principal Component Analysis (PCA) and the Discrete Cosine Transform (DCT) using the face database of Olivetti Research Laboratory (ORL). In spite of its simple computation, the proposed algorithm (WHT) gave very close results to those obtained by the PCA and DCT. This paper initiates the research into WHT and the family of frequency transforms and examines their suitability for feature extraction in face recognition applications.
Keywords: Face Recognition, Facial Feature Extraction, Principal Component Analysis, and Discrete Cosine Transform, Wash-Hadamard Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571804 Mobile to Server Face Recognition: A System Overview
Authors: Nurulhuda Ismail, Mas Idayu Md. Sabri
Abstract:
This paper presents a system overview of Mobile to Server Face Recognition, which is a face recognition application developed specifically for mobile phones. Images taken from mobile phone cameras lack of quality due to the low resolution of the cameras. Thus, a prototype is developed to experiment the chosen method. However, this paper shows a result of system backbone without the face recognition functionality. The result demonstrated in this paper indicates that the interaction between mobile phones and server is successfully working. The result shown before the database is completely ready. The system testing is currently going on using real images and a mock-up database to test the functionality of the face recognition algorithm used in this system. An overview of the whole system including screenshots and system flow-chart are presented in this paper. This paper also presents the inspiration or motivation and the justification in developing this system.
Keywords: Mobile to server, face recognition, system overview.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426803 Fast Facial Feature Extraction and Matching with Artificial Face Models
Authors: Y. H. Tsai, Y. W. Chen
Abstract:
Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.Keywords: Facial feature extraction, AdaBoost, Active shapemodel, Hausdorff distance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812802 Parallel Discrete Fourier Transform for Fast FIR Filtering Based on Overlapped-save Block Structure
Authors: Ying-Wen Bai, Ju-Maw Chen
Abstract:
To successfully provide a fast FIR filter with FTT algorithms, overlapped-save algorithms can be used to lower the computational complexity and achieve the desired real-time processing. As the length of the input block increases in order to improve the efficiency, a larger volume of zero padding will greatly increase the computation length of the FFT. In this paper, we use the overlapped block digital filtering to construct a parallel structure. As long as the down-sampling (or up-sampling) factor is an exact multiple lengths of the impulse response of a FIR filter, we can process the input block by using a parallel structure and thus achieve a low-complex fast FIR filter with overlapped-save algorithms. With a long filter length, the performance and the throughput of the digital filtering system will also be greatly enhanced.
Keywords: FIR Filter, Overlapped-save Algorithm, ParallelStructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669801 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: Approach instance-based, area Under the ROC Curve, Patient-specific Decision Path, clinical predictions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580800 Optimization of Distributed Processors for Power System: Kalman Filters using Petri Net
Authors: Anant Oonsivilai, Kenedy A. Greyson
Abstract:
The growth and interconnection of power networks in many regions has invited complicated techniques for energy management services (EMS). State estimation techniques become a powerful tool in power system control centers, and that more information is required to achieve the objective of EMS. For the online state estimator, assuming the continuous time is equidistantly sampled with period Δt, processing events must be finished within this period. Advantage of Kalman Filtering (KF) algorithm in using system information to improve the estimation precision is utilized. Computational power is a major issue responsible for the achievement of the objective, i.e. estimators- solution at a small sampled period. This paper presents the optimum utilization of processors in a state estimator based on KF. The model used is presented using Petri net (PN) theory.
Keywords: Kalman filters, model, Petri Net, power system, sequential State estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357799 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902798 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.
Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110797 Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems
Authors: Chidentree Treesatayapun
Abstract:
A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.
Keywords: Neuro-Fuzzy, learning algorithm, nonlinear discrete time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425