Search results for: optimization via simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4979

Search results for: optimization via simulation

4679 Optimized Algorithm for Particle Swarm Optimization

Authors: Fuzhang Zhao

Abstract:

Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.

Keywords: Diversification search, intensification search, optimal weighting, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
4678 The Role of Object Oriented Simulation F Modeling in Maintenance Processes

Authors: Abdulsalam A. Al-Sudairi

Abstract:

Object-oriented simulation is considered one of the most sophisticated techniques that has been widely used in planning, designing, executing and maintaining construction projects. This technique enables the modeler to focus on objects which is extremely important for thorough understanding of a system. Thus, identifying an object is an essential point of building a successful simulation model. In a maintenance process an object is a maintenance work order (MWO). This study demonstrates a maintenance simulation model for the building maintenance division of Saudi Consolidated Electric Company (SCECO) in Dammam, Saudi Arabia. The model focused on both types of maintenance processes namely: (1) preventive maintenance (PM) and (2) corrective maintenance (CM). It is apparent from the findings that object-oriented simulation is a good diagnostic and experimental tool. This is because problems, limitations, bottlenecks and so forth are easily identified. These features are very difficult to obtain when using other tools.

Keywords: Object oriented, simulation, maintenance, process, work orders

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
4677 Heuristics Analysis for Distributed Scheduling using MONARC Simulation Tool

Authors: Florin Pop

Abstract:

Simulation is a very powerful method used for highperformance and high-quality design in distributed system, and now maybe the only one, considering the heterogeneity, complexity and cost of distributed systems. In Grid environments, foe example, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. In addition, Grid test-beds are limited and creating an adequately-sized test-bed is expensive and time consuming. Scalability, reliability and fault-tolerance become important requirements for distributed systems in order to support distributed computation. A distributed system with such characteristics is called dependable. Large environments, like Cloud, offer unique advantages, such as low cost, dependability and satisfy QoS for all users. Resource management in large environments address performant scheduling algorithm guided by QoS constrains. This paper presents the performance evaluation of scheduling heuristics guided by different optimization criteria. The algorithms for distributed scheduling are analyzed in order to satisfy users constrains considering in the same time independent capabilities of resources. This analysis acts like a profiling step for algorithm calibration. The performance evaluation is based on simulation. The simulator is MONARC, a powerful tool for large scale distributed systems simulation. The novelty of this paper consists in synthetic analysis results that offer guidelines for scheduler service configuration and sustain the empirical-based decision. The results could be used in decisions regarding optimizations to existing Grid DAG Scheduling and for selecting the proper algorithm for DAG scheduling in various actual situations.

Keywords: Scheduling, Simulation, Performance Evaluation, QoS, Distributed Systems, MONARC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
4676 Optimization of Parametric Studies Using Strategies of Sampling Techniques

Authors: Lenka Ševelová, Aleš Florian

Abstract:

To improve the efficiency of parametric studies or tests planning the method is proposed, that takes into account all input parameters, but only a few simulation runs are performed to assess the relative importance of each input parameter. For K input parameters with N input values the total number of possible combinations of input values equals NK. To limit the number of runs, only some (totally N) of possible combinations are taken into account. The sampling procedure Updated Latin Hypercube Sampling is used to choose the optimal combinations. To measure the relative importance of each input parameter, the Spearman rank correlation coefficient is proposed. The sensitivity and the influence of all parameters are analyzed within one procedure and the key parameters with the largest influence are immediately identified.

Keywords: Concrete, pavement, simulation, reliability, Latin Hypercube Sampling, parametric studies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
4675 A Simulation Software for DNA Computing Algorithms Implementation

Authors: M. S. Muhammad, S. M. W. Masra, K. Kipli, N. Zamhari

Abstract:

The capturing of gel electrophoresis image represents the output of a DNA computing algorithm. Before this image is being captured, DNA computing involves parallel overlap assembly (POA) and polymerase chain reaction (PCR) that is the main of this computing algorithm. However, the design of the DNA oligonucleotides to represent a problem is quite complicated and is prone to errors. In order to reduce these errors during the design stage before the actual in-vitro experiment is carried out; a simulation software capable of simulating the POA and PCR processes is developed. This simulation software capability is unlimited where problem of any size and complexity can be simulated, thus saving cost due to possible errors during the design process. Information regarding the DNA sequence during the computing process as well as the computing output can be extracted at the same time using the simulation software.

Keywords: DNA computing, PCR, POA, simulation software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
4674 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the simulation model. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from motion capture of an exerciser during a seated aerobic row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the active controlled system compared to the passive controlled system, which showed less force reduction.

Keywords: Simulation, counterweight, exercise, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 318
4673 Simulation Study of DFIG Wind Turbine under Grid Fault

Authors: N. Zerzouri, H. Labar, S. Kechida

Abstract:

During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today-s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.

Keywords: Doubly fed induction generator (DFIG), Wind energy, grid fault

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
4672 Fault Location Identification in High Voltage Transmission Lines

Authors: Khaled M. El Naggar

Abstract:

This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.

Keywords: Optimization, estimation, faults, measurement, high voltage, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
4671 A Query Optimization Strategy for Autonomous Distributed Database Systems

Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam

Abstract:

Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.

Keywords: Autonomous strategies, distributed database systems, high priority, query optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
4670 Using Multi-Objective Particle Swarm Optimization for Bi-objective Multi-Mode Resource-Constrained Project Scheduling Problem

Authors: Fatemeh Azimi, Razeeh Sadat Aboutalebi, Amir Abbas Najafi

Abstract:

In this paper the multi-mode resource-constrained project scheduling problem with discounted cash flows is considered. Minimizing the makespan and maximization the net present value (NPV) are the two common objectives that have been investigated in the literature. We apply one evolutionary algorithm named multiobjective particle swarm optimization (MOPSO) to find Pareto front solutions. We used standard sets of instances from the project scheduling problem library (PSPLIB). The results are computationally compared respect to different metrics taken from the literature on evolutionary multi-objective optimization.

Keywords: Evolutionary multi-objective optimization makespan, multi-mode, resource constraint, net present value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
4669 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition

Authors: Samia Sadouki Chibani, Abdelkamel Tari

Abstract:

Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.

Keywords: Elephant herding optimization, web service composition, bio-inspired algorithms, QoS optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
4668 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
4667 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
4666 A MATLAB Simulink Library for Transient Flow Simulation of Gas Networks

Authors: M. Behbahani-Nejad, A. Bagheri

Abstract:

An efficient transient flow simulation for gas pipelines and networks is presented. The proposed transient flow simulation is based on the transfer function models and MATLABSimulink. The equivalent transfer functions of the nonlinear governing equations are derived for different types of the boundary conditions. Next, a MATLAB-Simulink library is developed and proposed considering any boundary condition type. To verify the accuracy and the computational efficiency of the proposed simulation, the results obtained are compared with those of the conventional finite difference schemes (such as TVD, method of lines, and other finite difference implicit and explicit schemes). The effects of the flow inertia and the pipeline inclination are incorporated in this simulation. It is shown that the proposed simulation has a sufficient accuracy and it is computationally more efficient than the other methods.

Keywords: Gas network, MATLAB-Simulink, transfer functions, transient flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6490
4665 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems

Authors: Ali Dorostkar

Abstract:

In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.

Keywords: Tangent line, fractional dimension, root, optimization problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
4664 Optimization Technique in Scheduling Duck Tours

Authors: Norhazwani M. Y., Khoo, C. F., Hasrul Nisham R.

Abstract:

Tourism industries are rapidly increased for the last few years especially in Malaysia. In order to attract more tourists, Malaysian Governance encourages any effort to increase Malaysian tourism industry. One of the efforts in attracting more tourists in Malacca, Malaysia is a duck tour. Duck tour is an amphibious sightseeing tour that works in two types of engines, hence, it required a huge cost to operate and maintain the vehicle. To other country, it is not so new but in Malaysia, it is just introduced, thus it does not have any systematic routing yet. Therefore, this paper proposed an optimization technique to formulate and schedule this tour to minimize the operating costs by considering it into Travelling Salesman Problem (TSP). The problem is then can be solved by one of the optimization technique especially meta-heuristics approach such as Tabu Search (TS) and Reactive Tabu Search (RTS).

Keywords: Optimization, Reactive Tabu Search, Tabu Search, Travelling Salesman Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
4663 Comprehensive Evaluation on China-s Industrial Structure Optimization from the Perspective of Coordination

Authors: Ying Wang

Abstract:

From the perspective of industrial structure coordination and based on an explicit definition for the connotation of industrial structure coordination, the synergetic coefficients are used to measure the coordination degree between three industries' input structure and output structure, and then the efficacy function method is employed to comprehensively evaluate the level of China-s industrial structure optimization. It is showed that Chinese industrial structure presented a "v-shaped" variation tendency between 1996 and 2008, and its industrial structure adjustment got obvious achievements after 2003, with the industrial structure optimization level increasing continuously. However in 2009, the level of China-s industrial structure optimization declined sharply due to the decreasing contribution degree of value added structure and energy structure coordination and the lower coordination degree of value added structure and capital structure.

Keywords: China's industrial structure, Coordination degree, Efficacy function, Synergetic coefficients

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
4662 PSO-based Possibilistic Portfolio Model with Transaction Costs

Authors: Wei Chen, Cui-you Yao, Yue Qiu

Abstract:

This paper deals with a portfolio selection problem based on the possibility theory under the assumption that the returns of assets are LR-type fuzzy numbers. A possibilistic portfolio model with transaction costs is proposed, in which the possibilistic mean value of the return is termed measure of investment return, and the possibilistic variance of the return is termed measure of investment risk. Due to considering transaction costs, the existing traditional optimization algorithms usually fail to find the optimal solution efficiently and heuristic algorithms can be the best method. Therefore, a particle swarm optimization is designed to solve the corresponding optimization problem. At last, a numerical example is given to illustrate our proposed effective means and approaches.

Keywords: Possibility theory, portfolio selection, transaction costs, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
4661 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. L. S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: Nuclear decommissioning, logistical optimization, decision-support framework, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
4660 Bee Colony Optimization Applied to the Bin Packing Problem

Authors: Kenza Aida Amara, Bachir Djebbar

Abstract:

We treat the two-dimensional bin packing problem which involves packing a given set of rectangles into a minimum number of larger identical rectangles called bins. This combinatorial problem is NP-hard. We propose a pretreatment for the oriented version of the problem that allows the valorization of the lost areas in the bins and the reduction of the size problem. A heuristic method based on the strategy first-fit adapted to this problem is presented. We present an approach of resolution by bee colony optimization. Computational results express a comparison of the number of bins used with and without pretreatment.

Keywords: Bee colony optimization, bin packing, heuristic algorithm, pretreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
4659 A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization

Authors: Sasadhar Bera, Indrajit Mukherjee

Abstract:

Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updating only components of the multidimensional vector may not ensure that the new point is at a significant distance from the current solution. If a minimum distance is not ensured during diversification, then there is always a possibility that the search will end up with reaching only local optimum. Therefore, to overcome such situations, a Mahalanobis distance-based diversification with Nelder-Mead simplex-based search scheme for each ant is proposed for the ACO strategy. A comparative computational run results, based on nine nonlinear standard test problems, confirms that the performance of ACO is improved significantly with the integration of the proposed schemes in the ACO.

Keywords: Ant Colony Optimization, Diversification Scheme, Intensification, Mahalanobis Distance, Nelder-Mead Simplex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
4658 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel

Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren

Abstract:

Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.

Keywords: Flywheel energy storage, fuzzy, optimization, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
4657 The Use of Computer Simulation as Technological Education for Crisis Management Staff

Authors: Jiří Barta, Josef Krahulec, Jiří F. Urbánek

Abstract:

Education and practical training crisis management members are a topical issue nowadays. The paper deals with the perspectives and possibilities of "smart solutions" to education for crisis management staff. Currently, there is a large number of simulation tools, which notes that they are suitable for practical training of crisis management staff. The first part of the paper is focused on the introduction of the technology simulation tools. The simulators aim is to create a realistic environment for the practical training of extending units of crisis staff. The second part of the paper concerns the possibilities of using the simulation technology to the education process. The aim of this section is to introduce the practical capabilities and potential of the simulation programs for practical training of crisis management staff.

Keywords: Crisis management staff, computer simulation, software, technological education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
4656 Application of Particle Swarm Optimization Technique for an Optical Fiber Alignment System

Authors: Marc Landry, Azeddine Kaddouri, Yassine Bouslimani, Mohsen Ghribi

Abstract:

In this paper, a new alignment method based on the particle swarm optimization (PSO) technique is presented. The PSO algorithm is used for locating the optimal coupling position with the highest optical power with three-degrees of freedom alignment. This algorithm gives an interesting results without a need to go thru the complex mathematical modeling of the alignment system. The proposed algorithm is validated considering practical tests considering the alignment of two Single Mode Fibers (SMF) and the alignment of SMF and PCF fibers.

Keywords: Particle-swarm optimization, optical fiber, automatic alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
4655 Economic Load Dispatch with Daily Load Patterns and Generator Constraints by Particle Swarm Optimization

Authors: N. Phanthuna V. Phupha N. Rugthaicharoencheep, S. Lerdwanittip

Abstract:

This paper presents an optimization technique to economic load dispatch (ELD) problems with considering the daily load patterns and generator constraints using a particle swarm optimization (PSO). The objective is to minimize the fuel cost. The optimization problem is subject to system constraints consisting of power balance and generation output of each units. The application of a constriction factor into PSO is a useful strategy to ensure convergence of the particle swarm algorithm. The proposed method is able to determine, the output power generation for all of the power generation units, so that the total constraint cost function is minimized. The performance of the developed methodology is demonstrated by case studies in test system of fifteen-generation units. The results show that the proposed algorithm scan give the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction

Keywords: Particle Swarm Optimization, Economic Load Dispatch, Generator Constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
4654 Numerical Simulation of Thermoreversible Polymer Gel Filtration

Authors: Said F. Urmancheev, Victor N. Kireev, Svetlana F. Khizbullina

Abstract:

This paper presents results of numerical simulation of filtration of abnormal thermoviscous fluid on an example of thermo reversible polymer gel.

Keywords: Abnormal thermoviscous fluid, filtration, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
4653 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions

Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan

Abstract:

The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.

Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
4652 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems

Authors: Ramdan B. A. Koad, Ahmed. F. Zobaa

Abstract:

Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), andParticle Swarm Optimization (PSO) algorithmfor (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC cuk converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.

Keywords: Incremental Conductance (IncCond) Method, Perturb and Observe (P&O) Method, Photovoltaic Systems (PV) and Practical Swarm Optimization Algorithm (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5734
4651 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
4650 An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability

Authors: W. M. Wan Muhamad, E. Sujatmika, M.R. Idris, S.A. Syed Ahmad

Abstract:

A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.

Keywords: Environmental Sustainability, Shape Optimization, Fatigue, Rear Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4294