Search results for: Interpolator and Interpolation Filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 746

Search results for: Interpolator and Interpolation Filter

446 A Study on Algorithm Fusion for Recognition and Tracking of Moving Robot

Authors: Jungho Choi, Youngwan Cho

Abstract:

This paper presents an algorithm for the recognition and tracking of moving objects, 1/10 scale model car is used to verify performance of the algorithm. Presented algorithm for the recognition and tracking of moving objects in the paper is as follows. SURF algorithm is merged with Lucas-Kanade algorithm. SURF algorithm has strong performance on contrast, size, rotation changes and it recognizes objects but it is slow due to many computational complexities. Processing speed of Lucas-Kanade algorithm is fast but the recognition of objects is impossible. Its optical flow compares the previous and current frames so that can track the movement of a pixel. The fusion algorithm is created in order to solve problems which occurred using the Kalman Filter to estimate the position and the accumulated error compensation algorithm was implemented. Kalman filter is used to create presented algorithm to complement problems that is occurred when fusion two algorithms. Kalman filter is used to estimate next location, compensate for the accumulated error. The resolution of the camera (Vision Sensor) is fixed to be 640x480. To verify the performance of the fusion algorithm, test is compared to SURF algorithm under three situations, driving straight, curve, and recognizing cars behind the obstacles. Situation similar to the actual is possible using a model vehicle. Proposed fusion algorithm showed superior performance and accuracy than the existing object recognition and tracking algorithms. We will improve the performance of the algorithm, so that you can experiment with the images of the actual road environment.

Keywords: SURF, Optical Flow Lucas-Kanade, Kalman Filter, object recognition, object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
445 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: Chebyshev polynomials, Fractional order differentiator, Laplacian of Gaussian (LoG) method, Low contrast image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275
444 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties

Authors: Jaehyug Lee, Tae-Ho Song

Abstract:

Vacuum Insulation Panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agrees well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.

Keywords: Combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
443 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks

Authors: Amin Sedighfar, M. R. Moniri

Abstract:

Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate. 

Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
442 The Excess Loop Delay Calibration in a Bandpass Continuous-Time Delta Sigma Modulators Based on Q-Enhanced LC Filter

Authors: Sorore Benabid

Abstract:

The Q-enhanced LC filters are the most used architecture in the Bandpass (BP) Continuous-Time (CT) Delta-Sigma (ΣΔ) modulators, due to their: high frequencies operation, high linearity than the active filters and a high quality factor obtained by Q-enhanced technique. This technique consists of the use of a negative resistance that compensate the ohmic losses in the on-chip inductor. However, this technique introduces a zero in the filter transfer function which will affect the modulator performances in term of Dynamic Range (DR), stability and in-band noise (Signal-to-Noise Ratio (SNR)). In this paper, we study the effect of this zero and we demonstrate that a calibration of the excess loop delay (ELD) is required to ensure the best performances of the modulator. System level simulations are done for a 2ndorder BP CT (ΣΔ) modulator at a center frequency of 300MHz. Simulation results indicate that the optimal ELD should be reduced by 13% to achieve the maximum SNR and DR compared to the ideal LC-based ΣΔ modulator.

Keywords: Continuous-time bandpass delta-sigma modulators, excess loop delay, on-chip inductor, Q-enhanced LC filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
441 Subband Adaptive Filter Exploiting Sparsity of System

Authors: Young-Seok Choi

Abstract:

This paper presents a normalized subband adaptive filtering (NSAF) algorithm to cope with the sparsity condition of an underlying system in the context of compressive sensing. By regularizing a weighted l1-norm of the filter taps estimate onto the cost function of the NSAF and utilizing a subgradient analysis, the update recursion of the l1-norm constraint NSAF is derived. Considering two distinct weighted l1-norm regularization cases, two versions of the l1-norm constraint NSAF are presented. Simulation results clearly indicate the superior performance of the proposed l1-norm constraint NSAFs comparing with the classical NSAF.

Keywords: Subband adaptive filtering, sparsity constraint, weighted l1-norm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
440 Localization by DKF Multi Sensor Fusion in the Uncertain Environments for Mobile Robot

Authors: Omid Sojodishijani, Saeed Ebrahimijam, Vahid Rostami

Abstract:

This paper presents an optimized algorithm for robot localization which increases the correctness and accuracy of the estimating position of mobile robot to more than 150% of the past methods [1] in the uncertain and noisy environment. In this method the odometry and vision sensors are combined by an adapted well-known discrete kalman filter [2]. This technique also decreased the computation process of the algorithm by DKF simple implementation. The experimental trial of the algorithm is performed on the robocup middle size soccer robot; the system can be used in more general environments.

Keywords: Discrete Kalman filter, odometry sensor, omnidirectional vision sensor, Robot Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
439 Evaluation of Context Information for Intermittent Networks

Authors: S. Balaji, E. Golden Julie, Y. Harold Robinson

Abstract:

The context aware adaptive routing protocol is presented for unicast communication in intermittently connected mobile ad hoc networks (MANETs). The selection of the node is done by the Kalman filter prediction theory and it also makes use of utility functions. The context aware adaptive routing is defined by spray and wait technique, but the time consumption in delivering the message is too high and also the resource wastage is more. In this paper, we describe the spray and focus routing scheme for avoiding the existing problems.

Keywords: Context aware adaptive routing, Kalman filter prediction, spray and wait, spray and focus, intermittent networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
438 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: Structural health monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743
437 A Resistorless High Input Impedance First Order All-Pass Filter Using CCCIIs

Authors: Kapil Dev Sharma, Kirat Pal, Costas Psychalinos

Abstract:

A new first order all-pass filter topology realized using current controlled current conveyors (CCCIIs) is introduced in this paper. Offered benefits are the high-impedance of the input node, the absence of external resistors because of the usage of CCCIIs with positive and negative intrinsic resistances, the presence of only grounded capacitors, and the capability of electronic adjustment of the phase shift through a single bias current. The correct operation of the introduced topology is conformed through simulation results, while its behavior is evaluated through comparison results.

Keywords: Active filters, All-pass filters, Analog signal processing, Current conveyors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
436 Investigation of a Hybrid Process: Multipoint Incremental Forming

Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo

Abstract:

Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.

Keywords: Incremental forming, numerical simulation, MPIF, multipoint forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
435 Frequency-Domain Design of Fractional-Order FIR Differentiators

Authors: Wei-Der Chang, Dai-Ming Chang, Eri-Wei Chiang, Chia-Hung Lin, Jian-Liung Chen

Abstract:

In this paper, a fractional-order FIR differentiator design method using the differential evolution (DE) algorithm is presented. In the proposed method, the FIR digital filter is designed to meet the frequency response of a desired fractal-order differentiator, which is evaluated in the frequency domain. To verify the design performance, another design method considered in the time-domain is also provided. Simulation results reveal the efficiency of the proposed method.

Keywords: Fractional-order differentiator, FIR digital filter, Differential evolution algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
434 Unsupervised Texture Segmentation via Applying Geodesic Active Regions to Gaborian Feature Space

Authors: Yuan He, Yupin Luo, Dongcheng Hu

Abstract:

In this paper, we propose a novel variational method for unsupervised texture segmentation. We use a Gabor filter bank to extract texture features. Some of the filtered channels form a multidimensional Gaborian feature space. To avoid deforming contours directly in a vector-valued space we use a Gaussian mixture model to describe the statistical distribution of this space and get the boundary and region probabilities. Then a framework of geodesic active regions is applied based on them. In the end, experimental results are presented, and show that this method can obtain satisfied boundaries between different texture regions.

Keywords: Texture segmentation, Gabor filter, snakes, Geodesicactive regions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
433 On Adaptive Optimization of Filter Performance Based on Markov Representation for Output Prediction Error

Authors: Hong Son Hoang, Remy Baraille

Abstract:

This paper addresses the problem of how one can improve the performance of a non-optimal filter. First the theoretical question on dynamical representation for a given time correlated random process is studied. It will be demonstrated that for a wide class of random processes, having a canonical form, there exists a dynamical system equivalent in the sense that its output has the same covariance function. It is shown that the dynamical approach is more effective for simulating and estimating a Markov and non- Markovian random processes, computationally is less demanding, especially with increasing of the dimension of simulated processes. Numerical examples and estimation problems in low dimensional systems are given to illustrate the advantages of the approach. A very useful application of the proposed approach is shown for the problem of state estimation in very high dimensional systems. Here a modified filter for data assimilation in an oceanic numerical model is presented which is proved to be very efficient due to introducing a simple Markovian structure for the output prediction error process and adaptive tuning some parameters of the Markov equation.

Keywords: Statistical simulation, canonical form, dynamical system, Markov and non-Markovian processes, data assimilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
432 Design of Compliant Mechanism Based Microgripper with Three Finger Using Topology Optimization

Authors: R. Bharanidaran, B. T. Ramesh

Abstract:

High precision in motion is required to manipulate the micro objects in precision industries for micro assembly, cell manipulation etc. Precision manipulation is achieved based on the appropriate mechanism design of micro devices such as microgrippers. Design of a compliant based mechanism is the better option to achieve a highly precised and controlled motion. This research article highlights the method of designing a compliant based three fingered microgripper suitable for holding asymmetric objects. Topological optimization technique, a systematic method is implemented in this research work to arrive a topologically optimized design of the mechanism needed to perform the required micro motion of the gripper. Optimization technique has a drawback of generating senseless regions such as node to node connectivity and staircase effect at the boundaries. Hence, it is required to have post processing of the design to make it manufacturable. To reduce the effect of post processing stage and to preserve the edges of the image, a cubic spline interpolation technique is introduced in the MATLAB program. Structural performance of the topologically developed mechanism design is tested using finite element method (FEM) software. Further the microgripper structure is examined to find its fatigue life and vibration characteristics.

Keywords: Compliant mechanism, Cubic spline interpolation, FEM, Topology optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3579
431 Development of Integrated GIS Interface for Characteristics of Regional Daily Flow

Authors: Ju Young Lee, Jung-Seok Yang, Jaeyoung Choi

Abstract:

The purpose of this paper primarily intends to develop GIS interface for estimating sequences of stream-flows at ungauged stations based on known flows at gauged stations. The integrated GIS interface is composed of three major steps. The first, precipitation characteristics using statistical analysis is the procedure for making multiple linear regression equation to get the long term mean daily flow at ungauged stations. The independent variables in regression equation are mean daily flow and drainage area. Traditionally, mean flow data are generated by using Thissen polygon method. However, method for obtaining mean flow data can be selected by user such as Kriging, IDW (Inverse Distance Weighted), Spline methods as well as other traditional methods. At the second, flow duration curve (FDC) is computing at unguaged station by FDCs in gauged stations. Finally, the mean annual daily flow is computed by spatial interpolation algorithm. The third step is to obtain watershed/topographic characteristics. They are the most important factors which govern stream-flows. In summary, the simulated daily flow time series are compared with observed times series. The results using integrated GIS interface are closely similar and are well fitted each other. Also, the relationship between the topographic/watershed characteristics and stream flow time series is highly correlated.

Keywords: Integrated GIS interface, spatial interpolation algorithm, FDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
430 Statically Fused Unbiased Converted Measurements Kalman Filter

Authors: Zhengkun Guo, Yanbin Li, Wenqing Wang, Bo Zou

Abstract:

Active radar and sonar systems often report Doppler measurements in addition to the position measurements such as range and bearing. The tracker can perform better by making full use of the Doppler measurements. However, due to the high nonlinearity of the Doppler measurements with respect to the target state in the Cartesian coordinate systems, those measurements are not always fully exploited. This paper mainly focuses on dealing with the Doppler measurements as well as the position measurements in Polar coordinates. The Statically Fused Converted Position and Doppler Measurements Kalman Filter (SF-CMKF) with additive debiased measurement conversion has been presented. However, the exact compensation for the bias of the measurement conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in the large angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for two-dimensional (Polar-to-Cartesian) tracking are derived, and the SF-CMKF is improved by using those conversion. Monte Carlo simulations are presented to demonstrate the statistic consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF).

Keywords: Measurement conversion, Doppler, Kalman filter, estimation, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 375
429 Adaptive Line Enhancement of Narrowband Signal

Authors: Young-Seok Choi

Abstract:

The Adaptive Line Enhancer (ALE) is widely used for enhancing narrowband signals corrupted by broadband noise. In this paper, we propose novel ALE methods to improve the enhancing capability. The proposed methods are motivated by the fact that the output of the ALE is a fine estimate of the desired narrowband signal with the broadband noise component suppressed. The proposed methods preprocess the input signal using ALE filter to regenerate a finer input signal. Thus the proposed ALE is driven by the input signal with higher signal-to-noise ratio (SNR). The analysis and simulation results are presented to demonstrate that the proposed ALE has better performance than conventional ALE’s.

Keywords: Adaptive filter, adaptive line enhancer, noise, feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
428 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Authors: Krishna Kumar Singh, Praveen Jain

Abstract:

Collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with higher thickness of MS media indicated recharge rate slightly more than that of all treatment with lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Keywords: Groundwater, medium sand-mixed storm water filter, inflow sediment load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
427 Palmprint Recognition by Wavelet Transform with Competitive Index and PCA

Authors: Deepti Tamrakar, Pritee Khanna

Abstract:

This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.

Keywords: DWT, EER, Euclidean Distance, Gabor filter, PCA, ROI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
426 On the Modeling and State Estimation for Dynamic Power System

Authors: A. Thabet, M. Boutayeb, M. N. Abdelkrim

Abstract:

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.

Keywords: Power system, Dynamic decoupled model, Extended Kalman Filter, Convergence analysis, Time computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
425 Trapping Efficiency of Diesel Particles Through a Square Duct

Authors: Francis William S, Imtiaz Ahmed Choudhury, Ananda Kumar Eriki, A. John Rajan

Abstract:

Diesel Engines emit complex mixtures of inorganic and organic compounds in the form of both solid and vapour phase particles. Most of the particulates released are ultrafine nanoparticles which are detrimental to human health and can easily enter the body by respiration. The emissions standards on particulate matter release from diesel engines are constantly upgraded within the European Union and with future regulations based on the particles numbers released instead of merely mass, the need for effective aftertreatment devices will increase. Standard particulate filters in the form of wall flow filters can have problems with high soot accumulation, producing a large exhaust backpressure. A potential solution would be to combine the standard filter with a flow through filter to reduce the load on the wall flow filter. In this paper soot particle trapping has been simulated in different continuous flow filters of monolithic structure including the use of promoters, at laminar flow conditions. An Euler Lagrange model, the discrete phase model in Ansys used with user defined functions for forces acting on particles. A method to quickly screen trapping of 5 nm and 10 nm particles in different catalysts designs with tracers was also developed. Simulations of square duct monoliths with promoters show that the strength of the vortices produced are not enough to give a high amount of particle deposition on the catalyst walls. The smallest particles in the simulations, 5 and 10 nm particles were trapped to a higher extent, than larger particles up to 1000 nm, in all studied geometries with the predominant deposition mechanism being Brownian diffusion. The comparison of the different filters designed with a wall flow filter does show that the options for altering a design of a flow through filter, without imposing a too large pressure drop penalty are good.

Keywords: Diesel Engine trap, thermophoresis, Exhaust pipe, PM-Simulation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
424 An Algorithm for Detecting Seam Cracks in Steel Plates

Authors: Doo-chul Choi, Yong-Ju Jeon, Jong Pil Yun, Sung Wook Yun, Sang Woo Kim

Abstract:

In this study, we developed an algorithm for detecting seam cracks in a steel plate. Seam cracks are generated in the edge region of a steel plate. We used the Gabor filter and an adaptive double threshold method to detect them. To reduce the number of pseudo defects, features based on the shape of seam cracks were used. To evaluate the performance of the proposed algorithm, we tested 989 images with seam cracks and 9470 defect-free images. Experimental results show that the proposed algorithm is suitable for detecting seam cracks. However, it should be improved to increase the true positive rate.

Keywords: Defect detection, Gabor filter, machine vision, surface inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
423 Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy

Authors: Hamed Masoumi, Seyed Mohsen Safavi, Zahra Khani

Abstract:

In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.

Keywords: Identification, Near Infrared, Plastic, Separation, Spectroscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10016
422 Self-tuned LMS Algorithm for Sinusoidal Time Delay Tracking

Authors: Jonah Gamba

Abstract:

In this paper the problem of estimating the time delay between two spatially separated noisy sinusoidal signals by system identification modeling is addressed. The system is assumed to be perturbed by both input and output additive white Gaussian noise. The presence of input noise introduces bias in the time delay estimates. Normally the solution requires a priori knowledge of the input-output noise variance ratio. We utilize the cascade of a self-tuned filter with the time delay estimator, thus making the delay estimates robust to input noise. Simulation results are presented to confirm the superiority of the proposed approach at low input signal-to-noise ratios.

Keywords: LMS algorithm, Self-tuned filter, Systemidentification, Time delay estimation, .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
421 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images

Authors: Maninder Pal

Abstract:

Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.

Keywords: Zooming, interpolation, medical images, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
420 The Design and Implementation of Classifying Bird Sounds

Authors: Haiyi Zhang, Jianli Guo, Daqian Yang

Abstract:

This Classifying Bird Sounds (chip notes) project-s purpose is to reduce the unwanted noise from recorded bird sound chip notes, design a scheme to detect differences and similarities between recorded chip notes, and classify bird sound chip notes. The technologies of determining the similarities of sound waves have been used in communication, sound engineering and wireless sound applications for many years. Our research is focused on the similarity of chip notes, which are the sounds from different birds. The program we use is generated by Microsoft Cµ.

Keywords: Classify Bird Sounds, Noise Filter, High-pass, Lowpass, Band-pass, Band-stop Filter, FIR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
419 A High-Frequency Low-Power Low-Pass-Filter-Based All-Current-Mirror Sinusoidal Quadrature Oscillator

Authors: A. Leelasantitham, B. Srisuchinwong

Abstract:

A high-frequency low-power sinusoidal quadrature oscillator is presented through the use of two 2nd-order low-pass current-mirror (CM)-based filters, a 1st-order CM low-pass filter and a CM bilinear transfer function. The technique is relatively simple based on (i) inherent time constants of current mirrors, i.e. the internal capacitances and the transconductance of a diode-connected NMOS, (ii) a simple negative resistance RN formed by a resistor load RL of a current mirror. Neither external capacitances nor inductances are required. As a particular example, a 1.9-GHz, 0.45-mW, 2-V CMOS low-pass-filter-based all-current-mirror sinusoidal quadrature oscillator is demonstrated. The oscillation frequency (f0) is 1.9 GHz and is current-tunable over a range of 370 MHz or 21.6 %. The power consumption is at approximately 0.45 mW. The amplitude matching and the quadrature phase matching are better than 0.05 dB and 0.15°, respectively. Total harmonic distortions (THD) are less than 0.3 %. At 2 MHz offset from the 1.9 GHz, the carrier to noise ratio (CNR) is 90.01 dBc/Hz whilst the figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 153.03 dBc/Hz. The ratio of the oscillation frequency (f0) to the unity-gain frequency (fT) of a transistor is 0.25. Comparisons to other approaches are also included.

Keywords: Sinusoidal quadrature oscillator, low-pass-filterbased, current-mirror bilinear transfer function, all-current-mirror, negative resistance, low power, high frequency, low distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
418 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling

Authors: M. Almutairi, S. Hadjiloucas

Abstract:

The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.

Keywords: Harmonics, passive filter, power factor, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
417 Enhanced Parallel-Connected Comb Filter Method for Multiple Pitch Estimation

Authors: Taro Matsuno, Yuta Otani, Ryo Tanaka, Kaori Ikezaki, Hitoshi Yamamoto, Masaru Fujieda, Yoshihisa Ishida

Abstract:

This paper presents an improvement method of the multiple pitch estimation algorithm using comb filters. Conventionally the pitch was estimated by using parallel -connected comb filters method (PCF). However, PCF has problems which often fail in the pitch estimation when there is the fundamental frequency of higher tone near harmonics of lower tone. Therefore the estimation is assigned to a wrong note when shared frequencies happen. This issue often occurs in estimating octave 3 or more. Proposed method, for solving the problem, estimates the pitch with every harmonic instead of every octave. As a result, our method reaches the accuracy of more than 80%.

Keywords: music transcription, pitch estimation, comb filter, fractional delay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411