Search results for: Gradient boosting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 347

Search results for: Gradient boosting

47 Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines

Authors: Zoran Jovanovic, Zoran Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.

Keywords: Automotive flows, flame propagation, combustion modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
46 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based On Polarization-Holographic Grating

Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze

Abstract:

A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarizationholographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.

Keywords: Birefringence, graded oriented polymers, linear dichroism, optical polymers, optical anisotropy, polarization-holographic grating,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
45 Laser Transmission through Vegetative Material

Authors: Juliana A. Fracarolli, Adilson M. Enes, Inácio M. Dal Fabbro, Silvestre Rodrigues

Abstract:

The dynamic speckle or biospeckle is an interference phenomenon generated at the reflection of a coherent light by an active surface or even by a particulate or living body surface. The above mentioned phenomenon gave scientific support to a method named biospeckle which has been employed to study seed viability, biological activity, tissue senescence, tissue water content, fruit bruising, etc. Since the above mentioned method is not invasive and yields numerical values, it can be considered for possible automation associated to several processes, including selection and sorting. Based on these preliminary considerations, this research work proposed to study the interaction of a laser beam with vegetative samples by measuring the incident light intensity and the transmitted light beam intensity at several vegetative slabs of varying thickness. Tests were carried on fifteen slices of apple tissue divided into three thickness groups, i.e., 4 mm, 5 mm, 18 mm and 22 mm. A diode laser beam of 10mW and 632 nm wavelength and a Samsung digital camera were employed to carry the tests. Outgoing images were analyzed by comparing the gray gradient of a fixed image column of each image to obtain a laser penetration scale into the tissue, according to the slice thickness.

Keywords: Fruit, laser, laser transmission, vegetative tissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
44 Thermophoresis Particle Precipitate on Heated Surfaces

Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak

Abstract:

This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.

Keywords: Thermophoresis, porous medium, variable surface heat flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
43 Gradations in Concentration of Heavy and Mineral Elements with Distance and Depth of Soil in the Vicinity of Auto Mechanic Workshops in Sabon Gari, Kaduna State, Nigeria

Authors: E. D. Paul, H. Otanwa, O. F. Paul, A. J. Salifu, J. E. Toryila, C. E. Gimba

Abstract:

The concentration levels of six heavy metals (Cd, Cr, Fe, Ni, Pb and Zn) and two mineral elements (Ca and Mg) were determined in soil samples collected from the vicinity of two auto mechanic workshops in Sabon-Gari, Kaduna state, Nigeria, using Atomic Absorption Spectrometry (AAS), in order to compare the gradation of their concentrations with distance and depth of soil from the workshop sites. At site 1, concentrations of Lead, Chromium, Iron and Zinc were generally found to be above the World Health Organization limits, while those of Nickel and Cadmium fell within the limits. Iron had the highest concentration with a range of 176.274 ppm to 489.127 ppm at depths of 5 cm to 15 cm and a distance range of 5 m to 15 m, while the concentration of cadmium was least with a range of 0.001 ppm to 0.008 ppm at similar depth and distance ranges. In addition, there was more of calcium (11.521 ppm to 121.709 ppm), in all the samples, than magnesium (11.293 ppm to 21.635 ppm). Similar results were obtained for site II. The concentrations of all the metals analyzed showed a downward gradient with increase in depth and distance from both workshop sites except for iron and zinc at site 2. The immediate and remote implications of these findings on the biota are discussed.

Keywords: AAS, Heavy Metals, Mechanic Workshops, Soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
42 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results.

Keywords: Electrical resistivity, enthalpy, microhardness, solidification, tensile stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
41 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: Finite Element Analysis, FEA, Fused Deposition Modelling, residual stress, warpage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 480
40 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
39 Application of Pattern Search Method to Power System Security Constrained Economic Dispatch

Authors: A. K. Al-Othman, K. M. EL-Nagger

Abstract:

Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED). Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using one system. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: Security Constrained Economic Dispatch, Direct Search method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
38 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed

Abstract:

High Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20- 60 and 6-18 μg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 μg/ml and for 6S were 0.3672 and 1.2238 μg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: Ginger, 6-gingerol, HPLC, 6-shogaol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
37 Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate

Authors: Partha P. Gopmandal, S. Bhattacharyya

Abstract:

We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.

Keywords: Electrophoresis, Advective flow, Polarization effect, Numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
36 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary

Abstract:

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
35 Low Resolution Single Neural Network Based Face Recognition

Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum

Abstract:

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
34 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results

Authors: C. Villegas-Quezada, J. Climent

Abstract:

Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.

Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
33 Prone Positioning and Clinical Outcomes of Mechanically Ventilated Patients with Severe Acute Respiratory Distress Syndrome

Authors: Maha Salah Abdullah Ismail, Mahmoud M. Alsagheir, Mohammed Salah Abd Allah

Abstract:

Acute respiratory distress syndrome (ARDS) is characterized by permeability pulmonary edema and refractory hypoxemia. Lung-protective ventilation is still the key of better outcome in ARDS. Prone position reduces the trans-pulmonary pressure gradient, recruiting collapsed regions of the lung without increasing airway pressure or hyperinflation. Prone ventilation showed improved oxygenation and improved outcomes in severe hypoxemic patients with ARDS. This study evaluates the effect of prone positioning on mechanically ventilated patients with ARDS. A quasi-experimental design was carried out at Critical Care Units, on 60 patients. Two tools were utilized to collect data; Socio demographic, medical and clinical outcomes data sheet. Results of the present study indicated that prone position improves oxygenation in patients with severe respiratory distress syndrome. The study recommended that use prone position in patients with severe ARDS, as early as possible and for long sessions. Also, replication of this study on larger probability sample at the different geographical location is highly recommended.

Keywords: Acute respiratory distress syndrome, Critical care, Mechanical ventilation and Prone position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
32 Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall

Authors: Iau-Teh Wang, Chin-Yu Lee

Abstract:

Rockfall is a kind of irregular geological disaster. Its destruction time, space and movements are highly random. The impact force is determined by the way and velocity rocks move. The movement velocity of a rockfall depends on slope gradient of its moving paths, height, slope surface roughness and rock shapes. For effectively mitigate and prevent disasters brought by rockfalls, it is required to precisely calculate the moving paths of a rockfall so as to provide the best protective design. This paper applies Colorado Rockfall Simulation Program (CRSP) as our study tool to discuss the impact of slope shape and surface roughness on the moving paths of a single rockfall. The analytical results showed that the slope, m=1:1, acted as the threshold for rockfall bounce height on a monoclinal slight slope. When JRC ´╝£ 1.2, movement velocity reduced and bounce height increased as JCR increased. If slope fixed and JRC increased, the bounce height of rocks increased gradually with reducing movement velocity. Therefore, the analysis on the moving paths of rockfalls with CRSP could simulate bouncing of falling rocks. By analyzing moving paths, velocity, and bounce height of falling rocks, we could effectively locate impact points of falling rocks on a slope. Such analysis can be served as a reference for future disaster prevention and control.

Keywords: Rockfall, Slope Shape, Moving Path, SurfaceRoughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2808
31 Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes

Authors: M. Tarawneh

Abstract:

Two-phase frictional pressure drop data were obtained for condensation of carbon dioxide in single horizontal micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5 to 45 bars. The saturation temperature ranged from -1.5 oC up to 10 oC. These data have then been compared against three (two-phase) frictional pressure drop prediction methods. The first method is by Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R. Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants, Annexe 1972. Then the method used by FriedelL. Improved friction pressures drop in horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould Didi et al (2001) “Prediction of two-phase pressure gradients of refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935- 947. The best available method for annular flow was that of Muller- Steinhagen and Heck. It was observed that the peak in the two-phase frictional pressure gradient is at high vapor qualities.

Keywords: Two-phase flow, frictional pressure drop, horizontalmicro tube, carbon dioxide, condensers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3365
30 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Andrew Jester, Ross Lee, Pritpal Singh

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell akin to the charging/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: Battery, biomimetic, electrocytes, human neurons, ion-selective membranes, membrane potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
29 Prospects of Iraq’s Maritime Openness and Their Effect on Its Economy

Authors: Mohanad Hammad

Abstract:

Port institutions serve as a link connecting the land areas that receive the goods and the areas from where ships sail. These areas hold great significance for the conversion of goods into commodities of economic value, capable of meeting the needs of the society. Development of ports constitutes a fundamental component of the comprehensive economic development process. Recognizing this fact, developing countries have always resorted to this infrastructural element to resolve the numerous problems they face, taking into account its contribution to the reformation of their economic conditions. Iraqi ports have played a major role in boosting the commercial movement in Iraq, as they are the starting point of its oil exports and a key constituent in fulfilling the consumer and production needs of the various economic sectors of Iraq. With the Gulf wars and the economic blockade, Iraqi ports have continued to deteriorate and become unable to perform their functions as first-generation ports, prompting Iraq to use the ports of neighboring countries such as Jordan's Aqaba commercial port. Meanwhile, Iraqi ports face strong competition from the ports of neighboring countries, which have achieved progress and advancement as opposed to the declining performance and efficiency of Iraqi ports. The great developments in the economic conditions of Iraq lay a too great burden on the Iraqi maritime transport and ports, which require development in order to be able to meet the challenges arising from the fierce international and regional competition in the markets. Therefore, it is necessary to find appropriate solutions in support of the role that can be played by Iraqi ports in serving Iraq's foreign trade transported by sea and in keeping up with the development of foreign trade. Thus, this research aims at tackling the current situation of the Iraqi ports and their commercial activity and studying the problems and obstacles they face. The research also studies the future prospects of these ports, the potentials of maritime openness to Iraq under the fierce competition of neighboring ports, and the possibility of enhancing Iraqi ports’ competitiveness. Among the results produced by this research is the future scenario it proposes for Iraqi ports, mainly represented in the establishment of Al-Faw Port, which will contribute to a greater openness of maritime transport in Iraq, and the rehabilitation and expansion of existing ports. This research seeks to develop solutions to Iraq ports so that they can be repositioned as a vital means of promoting economic development.

Keywords: Transport, port, regional openness, development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
28 Effects of Inlet Distorted Flows on the Performance of an Axial Compressor

Authors: Asad Islam, Khalid Parvez

Abstract:

Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions.

Keywords: Angle, ANSYS-CFX®, axial compressor, Bladegen®, CFD, distortions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
27 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
26 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach

Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal

Abstract:

In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.

Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
25 Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study

Authors: Sidharth Talan, Devendra Kumar Yadav, Yuvraj Singh Rajput, Subhajit Bhattacharjee

Abstract:

Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.

Keywords: Bubble matrix analysis, LHDs, OEMs, pareto chart analysis, spares consumption matrix, critical alarms checklist.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
24 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: Functionally graded piezoelectric material, mixed-mode crack, non-local theory, Schmidt method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
23 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
22 Structural Analysis of Stiffened FGM Thick Walled Cylinders by Application of a New Cylindrical Super Element

Authors: S. A. Moeini, M. T.Ahmadian

Abstract:

Structural behavior of ring stiffened thick walled cylinders made of functionally graded materials (FGMs) is investigated in this paper. Functionally graded materials are inhomogeneous composites which are usually made from a mixture of metal and ceramic. The gradient compositional variation of the constituents from one surface to the other provides an elegant solution to the problem of high transverse shear stresses that are induced when two dissimilar materials with large differences in material properties are bonded. FGM formation of the cylinder is modeled by power-law exponent and the variation of characteristics is supposed to be in radial direction. A finite element formulation is derived for the analysis. According to the property variation of the constituent materials in the radial direction of the wall, it is not convenient to use conventional elements to model and analyze the structure of the stiffened FGM cylinders. In this paper a new cylindrical super-element is used to model the finite element formulation and analyze the static and modal behavior of stiffened FGM thick walled cylinders. By using this super-element the number of elements, which are needed for modeling, will reduce significantly and the process time is less in comparison with conventional finite element formulations. Results for static and modal analysis are evaluated and verified by comparison to finite element formulation with conventional elements. Comparison indicates a good conformity between results.

Keywords: FGMs, Modal analysis, Static analysis, Stiffened cylinders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
21 Experimental Measurements of the Mean Flow Field in Wide-Angled Diffusers: A Data Bank Contribution

Authors: Karanja Kibicho, Anthony Sayers

Abstract:

Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Stalled diffusers render the whole fluid flow system, in which they are part of, very inefficient. There is then an engineering need to try to understand the whole process of diffuser stall if any meaningful attempts to improve on diffuser efficiency are to be made. In this regard, this paper provides a data bank contribution for the mean flow-field in wide-angled diffusers where the complete velocity and static pressure fields, and pressure recovery data for diffusers in the fully stalled flow regime are experimentally measured. The measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centreline velocity for diffusers whose divergence angles were between 30Ôùª and 50Ôùª. Variation of Reynolds number did not significantly affect the velocity and static pressure profiles. The wall static pressure recovery was found to be more sensitive to changes in the Reynolds number. By increasing the velocity from 10 m/s to 20 m/s, the wall static pressure recovery increased by 8.31%. However, as the divergence angle was increased, a similar increase in the Reynolds number resulted in a higher percentage increase in pressure recovery. Experimental results showed that regardless of the wall to which the flow was attached, both the velocity and pressure fields were replicated with discrepancies below 2%.

Keywords: Two-dimensional, wide-angled, diffuser, stall, separated flows, subsonic flows, diffuser flow regimes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
20 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
19 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

Authors: Mohammad Talha, B. N. Singh

Abstract:

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
18 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements

Authors: Brody R. Clark, Chaminda Gallage, John Yeaman

Abstract:

Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.

Keywords: Asphalt, complex modulus, fatigue life, flexural stiffness, four-point bending, master curves, multigrade bitumen, thermal gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774