Search results for: Fuzzy Support Vector Machine (FSVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4095

Search results for: Fuzzy Support Vector Machine (FSVM)

3795 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process

Authors: C. Ardil

Abstract:

The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.

Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
3794 A Type-2 Fuzzy Adaptive Controller of a Class of Nonlinear System

Authors: A. El Ougli, I. Lagrat, I. Boumhidi

Abstract:

In this paper we propose a robust adaptive fuzzy controller for a class of nonlinear system with unknown dynamic. The method is based on type-2 fuzzy logic system to approximate unknown non-linear function. The design of the on-line adaptive scheme of the proposed controller is based on Lyapunov technique. Simulation results are given to illustrate the effectiveness of the proposed approach.

Keywords: Fuzzy set type-2, Adaptive fuzzy control, Nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
3793 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation

Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu

Abstract:

In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.

Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1161
3792 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation

Authors: N. Parandin, M. A. Fariborzi Araghi

Abstract:

in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.

Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
3791 On Some Subspaces of Entire Sequence Space of Fuzzy Numbers

Authors: T. Balasubramanian, A. Pandiarani

Abstract:

In this paper we introduce some subspaces of fuzzy entire sequence space. Some general properties of these sequence spaces are discussed. Also some inclusion relation involving the spaces are obtained. Mathematics Subject Classification: 40A05, 40D25.

Keywords: Fuzzy Numbers, Entire sequences, completeness, Fuzzy entire sequences

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
3790 Forward Simulation of a Parallel Hybrid Vehicle and Fuzzy Controller Design for Driving/Regenerative Propose

Authors: Peyman Naderi, Ali Farhadi, S. Mohammad Taghi Bathaee

Abstract:

One of the best ways for achievement of conventional vehicle changing to hybrid case is trustworthy simulation result and using of driving realities. For this object, in this paper, at first sevendegree- of-freedom dynamical model of vehicle will be shown. Then by using of statically model of engine, gear box, clutch, differential, electrical machine and battery, the hybrid automobile modeling will be down and forward simulation of vehicle for pedals to wheels power transformation will be obtained. Then by design of a fuzzy controller and using the proper rule base, fuel economy and regenerative braking will be marked. Finally a series of MATLAB/SIMULINK simulation results will be proved the effectiveness of proposed structure.

Keywords: Hybrid, Driving, Fuzzy, Regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
3789 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums

Authors: I. Zamani, M. H. Zarif

Abstract:

In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.

Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
3788 A New Reliability Allocation Method Based On Fuzzy Numbers

Authors: Peng Li, Chuanri Li, Tao Li

Abstract:

Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method, and gives concrete processes on determining the factor and sub-factor sets, weight sets, judgment set, and multi-stage fuzzy evaluation. To determine the weight of factor and sub-factor sets, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.

Keywords: Reliability allocation, fuzzy arithmetic, allocation weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3329
3787 Fuzzy Multiple Criteria Decision Making for Unmanned Combat Aircraft Selection Using Proximity Measure Method

Authors: C. Ardil

Abstract:

Intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PyFS), Picture fuzzy sets (PFS), q-rung orthopair fuzzy sets (q-ROF), Spherical fuzzy sets (SFS), T-spherical FS, and Neutrosophic sets (NS) are reviewed as multidimensional extensions of fuzzy sets in order to more explicitly and informatively describe the opinions of decision-making experts under uncertainty. To handle operations with standard fuzzy sets (SFS), the necessary operators; weighted arithmetic mean (WAM), weighted geometric mean (WGM), and Minkowski distance function are defined. The algorithm of the proposed proximity measure method (PMM) is provided with a multiple criteria group decision making method (MCDM) for use in a standard fuzzy set environment. To demonstrate the feasibility of the proposed method, the problem of selecting the best drone for an Air Force procurement request is used. The proximity measure method (PMM) based multidimensional standard fuzzy sets (SFS) is introduced to demonstrate its use with an issue involving unmanned combat aircraft selection.

Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), proximity measure method (PMM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 359
3786 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants

Authors: Rahib Hidayat Abiyev

Abstract:

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
3785 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM

Authors: Mehdi Ghayoumi

Abstract:

We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.

Keywords: lda, adaptive, svm, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
3784 Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

Authors: V. K. Banga, R. Kumar, Y. Singh

Abstract:

In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.

Keywords: Inverse kinematics, Genetic algorithms (GAs), Fuzzy logic (FL), Trajectory planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
3783 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, Gene Signature, SAM, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
3782 Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models

Authors: Ε. Giovanis

Abstract:

In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.

Keywords: Forecasting, Neuro-Fuzzy, Smoothing transition, Time-series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
3781 A New Approach For Ranking Of Generalized Trapezoidal Fuzzy Numbers

Authors: Amit Kumar, Pushpinder Singh, Parampreet Kaur, Amarpreet Kaur

Abstract:

Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, with the help of several counter examples it is proved that ranking method proposed by Chen and Chen (Expert Systems with Applications 36 (2009) 6833-6842) is incorrect. The main aim of this paper is to propose a new approach for the ranking of generalized trapezoidal fuzzy numbers. The main advantage of the proposed approach is that the proposed approach provide the correct ordering of generalized and normal trapezoidal fuzzy numbers and also the proposed approach is very simple and easy to apply in the real life problems. It is shown that proposed ranking function satisfies all the reasonable properties of fuzzy quantities proposed by Wang and Kerre (Fuzzy Sets and Systems 118 (2001) 375-385).

Keywords: Ranking function, Generalized trapezoidal fuzzy numbers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
3780 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach

Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick

Abstract:

Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.

Keywords: SPC, MSA, gauge capability, Cg, Cgk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5178
3779 Numerical Solving of General Fuzzy Linear Systems by Huang's Method

Authors: S. J. Hosseini Ghoncheh, M. Paripour

Abstract:

In this paper the Huang-s method for solving a m×n fuzzy linear system when, m≤ n, is considered. The method in detail is discussed and illustrated by solving some numerical examples.

Keywords: Fuzzy number, fuzzy linear systems, Huang's method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
3778 A Fuzzy Linear Regression Model Based on Dissemblance Index

Authors: Shih-Pin Chen, Shih-Syuan You

Abstract:

Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.

Keywords: Dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
3777 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant Kumar Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986 and 0.9214 respectively at HHpolarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373 and 0.9428 respectively.

Keywords: Bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227
3776 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm

Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag

Abstract:

This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.

Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
3775 On Q-Fuzzy Ideals in Γ-Semigroups

Authors: Samit Kumar Majumder

Abstract:

In this paper the concept of Q-fuzzification of ideals of Γ-semigroups has been introduced and some important properties have been investigated. A characterization of regular Γ-semigroup in terms of Q-fuzzy ideals has been obtained. Operator semigroups of a Γ-semigroup has been made to work by obtaining various relationships between Q-fuzzy ideals of a Γ-semigroup and that of its operator semigroups.

Keywords: Q-Fuzzy set, Γ-semigroup, Regular Γ-semigroup, Q-Fuzzy left(right) ideal, Operator semigroups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
3774 A New Condition for Conflicting Bifuzzy Sets Based On Intuitionistic Evaluation

Authors: Imran C.T., Syibrah M.N., Mohd Lazim A.

Abstract:

Fuzzy sets theory affirmed that the linguistic value for every contraries relation is complementary. It was stressed in the intuitionistic fuzzy sets (IFS) that the conditions for contraries relations, which are the fuzzy values, cannot be greater than one. However, complementary in two contradict phenomena are not always true. This paper proposes a new idea condition for conflicting bifuzzy sets by relaxing the condition of intuitionistic fuzzy sets. Here, we will critically forward examples using triangular fuzzy number in formulating a new condition for conflicting bifuzzy sets (CBFS). Evaluation of positive and negative in conflicting phenomena were calculated concurrently by relaxing the condition in IFS. The hypothetical illustration showed the applicability of the new condition in CBFS for solving non-complement contraries intuitionistic evaluation. This approach can be applied to any decision making where conflicting is very much exist.

Keywords: Conflicting bifuzzy set, conflicting degree, fuzzy sets, fuzzy numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
3773 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application

Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta

Abstract:

The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.

Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
3772 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
3771 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: Computational social science, movie preference, machine learning, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
3770 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification

Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka

Abstract:

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.

Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
3769 Standard Fuzzy Sets for Aircraft Selection using Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This study uses two-dimensional standard fuzzy sets to enhance multiple criteria decision-making analysis for passenger aircraft selection, allowing decision-makers to express judgments with uncertain and vague information. Using two-dimensional fuzzy numbers, three decision makers evaluated three aircraft alternatives according to seven decision criteria. A validity analysis based on two-dimensional standard fuzzy weighted geometric (SFWG) and two-dimensional standard fuzzy weighted average (SFGA) operators is conducted to test the proposed approach's robustness and effectiveness in the fuzzy multiple criteria decision making (MCDM) evaluation process. 

Keywords: Standard fuzzy sets (SFSs), aircraft selection, multiple criteria decision making, intuitionistic fuzzy sets (IFSs), SFWG, SFGA, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
3768 The Intuitionistic Fuzzy Ordered Weighted Averaging-Weighted Average Operator and its Application in Financial Decision Making

Authors: Shouzhen Zeng

Abstract:

We present a new intuitionistic fuzzy aggregation operator called the intuitionistic fuzzy ordered weighted averaging-weighted average (IFOWAWA) operator. The main advantage of the IFOWAWA operator is that it unifies the OWA operator with the WA in the same formulation considering the degree of importance that each concept has in the aggregation. Moreover, it is able to deal with an uncertain environment that can be assessed with intuitionistic fuzzy numbers. We study some of its main properties and we see that it has a lot of particular cases such as the intuitionistic fuzzy weighted average (IFWA) and the intuitionistic fuzzy OWA (IFOWA) operator. Finally, we study the applicability of the new approach on a financial decision making problem concerning the selection of financial strategies.

Keywords: Intuitionistic fuzzy numbers, Weighted average, OWA operator, Financial decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
3767 Novel and Different Definitions for Fuzzy Union and Intersection Operations

Authors: Aarthi Chandramohan, M. V. C. Rao

Abstract:

This paper presents three new methodologies for the basic operations, which aim at finding new ways of computing union (maximum) and intersection (minimum) membership values by taking into effect the entire membership values in a fuzzy set. The new methodologies are conceptually simple and easy from the application point of view and are illustrated with a variety of problems such as Cartesian product of two fuzzy sets, max –min composition of two fuzzy sets in different product spaces and an application of an inverted pendulum to determine the impact of the new methodologies. The results clearly indicate a difference based on the nature of the fuzzy sets under consideration and hence will be highly useful in quite a few applications where different values have significant impact on the behavior of the system.

Keywords: Centroid, fuzzy set operations, intersection, triangular norms , triangular S-norms, union.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
3766 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem

Authors: Mustafa Resa Becan

Abstract:

The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.

Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010