Search results for: Actuator fault
176 Inverse Dynamics of the Mould Base of Blow Molding Machines
Authors: Vigen Arakelian
Abstract:
This paper deals with the study of devices for displacement of the mould base of blow-molding machines. The displacement of the mould in the studied case is carried out by a linear actuator, which ensures the descent of the mould base and by extension springs, which return the letter in the initial position. The aim of this paper is to study the inverse dynamics of the device for displacement of the mould base of blow-molding machines and to determine its optimum parameters for higher rate of production. In the other words, it is necessary to solve the inverse dynamic problem to find the equation of motion linking applied forces with displacements. This makes it possible to determine the stiffness coefficient of the spring to turn the mold base back to the initial position for a given time. The obtained results are illustrated by a numerical example. It is shown that applying a spring with stiffness returns the mould base of the blow molding machine into the initial position in 0.1 sec.Keywords: Design, blow-molding machines, dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689175 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation
Authors: Sun Lim, Il-Kyun Jung
Abstract:
This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625174 Adaptive Nonlinear Backstepping Control
Authors: Sun Lim, Bong-Seok Kim
Abstract:
This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.Keywords: BLDC Motor Control, Backstepping Control, Adaptive nonlinear control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227173 Independent Spanning Trees on Systems-on-chip Hypercubes Routing
Authors: Eduardo Sant'Ana da Silva, Andre Luiz Pires Guedes, Eduardo Todt
Abstract:
Independent spanning trees (ISTs) provide a number of advantages in data broadcasting. One can cite the use in fault tolerance network protocols for distributed computing and bandwidth. However, the problem of constructing multiple ISTs is considered hard for arbitrary graphs. In this paper we present an efficient algorithm to construct ISTs on hypercubes that requires minimum resources to be performed.
Keywords: Hypercube, Independent Spanning Trees, Networks On Chip, Systems On Chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885172 Straightness Error Compensation Servo-system for Single-axis Linear Motor Stage
Authors: M. S. Kang, D. H. Kim, J. S. Yoon, B. S. Park, J. K. Lee
Abstract:
Since straightness error of linear motor stage is hardly dependent upon machining accuracy and assembling accuracy, there is limit on maximum realizable accuracy. To cope with this limitation, this paper proposed a servo system to compensate straightness error of a linear motor stage. The servo system is mounted on the slider of the linear motor stage and moves in the direction of the straightness error so as to compensate the error. From position dependency and repeatability of the straightness error of the slider, a feedforward compensation control is applied to the platform servo control. In the consideration of required fine positioning accuracy, a platform driven by an electro-magnetic actuator is suggested and a sliding mode control was applied. The effectiveness of the sliding mode control was verified along with some experimental results.Keywords: Linear Motor Stage, Straightness Error, Friction, Sliding Mode Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935171 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.
Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406170 Intelligent Face-Up CMP System Integrated with On-Line Optical Measurements
Authors: Sheng-Ming Huang, Nan-Chyuan Tsai, Chih-Che Lin, Chun-Chi Lin
Abstract:
An innovative design for intelligent Chemical Mechanical Polishing (CMP) system is proposed and verified by experiments in this report. On-line measurement and real-time feedback are integrated to eliminate the shortcomings of traditional approaches, e.g., the batch-to-batch discrepancy of required polishing time, over consumption of chemical slurry, and non-uniformity across the wafer. The major advantage of the proposed method is that the finish of local surface roughness can be consistent, no matter where the inner-ring region or outer-ring region is concerned. Secondly, it is able to eliminate the Edge effect. Conventionally, the interfacial induced stress near the wafer edge is generally much higher than that near the wafer center. At last, by using the proposed intelligent chemical mechanical polishing strategy, the cost of the entire machining cycle can be much reduced while the quality of the finished goods certainly upgraded.
Keywords: Chemical Mechanical Polishing, Active Magnetic Actuator, On-Line Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737169 Open Cloud Computing with Fault Tolerance
Authors: K. Zuva, T. Zuva, K. O. M. Mapoka
Abstract:
Cloud Computing (CC) has become one of the most talked about emerging technologies that provides powerful computing and large storage environments through the use of the Internet. Cloud computing provides different dynamically scalable computing resources as a service. It brings economic benefits to individuals and businesses that adopt the technology. In theory adoption of cloud computing reduces capital and operational expenditure on information technology. For this to be a reality there is need to solve some challenges and at the same time addressing concerns that consumers have about cloud computing. This paper looks at Cloud Computing in general then highlights the challenges of Cloud Computing and finally suggests solutions to some of the challenges.Keywords: Cloud Computing, SaaS, PaaS, IaaS, Internet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367168 Design and Implementation of a WiFi Based Home Automation System
Authors: Ahmed ElShafee, Karim Alaa Hamed
Abstract:
This paper presents a design and prototype implementation of new home automation system that uses WiFi technology as a network infrastructure connecting its parts. The proposed system consists of two main components; the first part is the server (web server), which presents system core that manages, controls, and monitors users- home. Users and system administrator can locally (LAN) or remotely (internet) manage and control system code. Second part is hardware interface module, which provides appropriate interface to sensors and actuator of home automation system. Unlike most of available home automation system in the market the proposed system is scalable that one server can manage many hardware interface modules as long as it exists on WiFi network coverage. System supports a wide range of home automation devices like power management components, and security components. The proposed system is better from the scalability and flexibility point of view than the commercially available home automation systems.Keywords: Home automation, Wireless LAN, WiFi, MicroControllers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36296167 Robotics System Design for Assembly and Disassembly Process
Authors: Nina Danišová, Roman Ružarovský, Karol Velíšek
Abstract:
In this paper is described a new conception of the Cartesian robot for automated assembly and also disassembly process. The advantage of this conception is the utilization the Cartesian assembly robot with its all peripheral automated devices for assembly of the assembled product. The assembly product in the end of the lifecycle can be disassembled with the same Cartesian disassembly robot with the use of the same peripheral automated devices and equipment. It is a new approach to problematic solving and development of the automated assembly systems with respect to lifecycle management of the assembly product and also assembly system with Cartesian robot. It is also important to develop the methodical process for design of automated assembly and disassembly system with Cartesian robot. Assembly and disassembly system use the same Cartesian robot input and output devices, assembly and disassembly units in one workplace with different application. Result of design methodology is the verification and proposition of real automated assembly and disassembly workplace with Cartesian robot for known verified model of assembled actuator.Keywords: Cartesian robot, design methodology, assembly, disassembly, pneumatic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950166 Fuzzy Logic Based Active Vibration Control of Piezoelectric Stewart Platform
Authors: Arian Bahrami, Mojtaba Tafaoli-Masoule, Mansour Nikkhah Bahrami
Abstract:
This paper demonstrates the potential of applying PD-like fuzzy logic controller for active vibration control of piezoelectric Stewart platforms. Through simulation, the control authority of the piezo stack actuators for effectively damping the Stewart platform vibration can be evaluated for further implementation of the system. Each leg of the piezoelectric Stewart platform consists of a linear piezo stack actuator, a collocated velocity sensor, a collocated displacement sensor and flexible tips for the connections with the two end plates. The piezoelectric stack is modeled as a bar element and the electro-mechanical coupling property is simulated using Matlab/Simulink software. Then, the open loop and closed loop dynamic responses are performed for the system to characterize the effect of the control on the vibration of the piezoelectric Stewart platform. A significant improvement in the damping of the structure can be observed by using the PD-like fuzzy controller.
Keywords: Active vibration control, Fuzzy controller, Piezoelectric stewart platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2896165 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence
Authors: Abdullah Bajelan, Adel Akbarimajd
Abstract:
Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.Keywords: Mechanical intelligence, Object manipulation, Passive mechanism, Passive non-prehensile manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268164 Gain Tuning Fuzzy Controller for an Optical Disk Drive
Authors: Shiuh-Jer Huang, Ming-Tien Su
Abstract:
Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.Keywords: Fuzzy control, gain tuning and optical disk drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586163 Design and Fabrication of Micro-Bubble Oxygenator
Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng
Abstract:
This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.
Keywords: Micro-bubble, nozzle, oxygenator, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352162 Free Vibration Analysis of Smart FGM Plates
Authors: F.Ebrahimi, A.Rastgo
Abstract:
Analytical investigation of the free vibration behavior of circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the circular FG plate based on the classical plate theory (CPT) is presented in this paper. The material properties of the functionally graded substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The differential equations of motion are solved analytically for clamped edge boundary condition of the plate. The detailed mathematical derivations are presented and Numerical investigations are performed for FG plates with two surface-bonded piezoelectric layers. Emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. The results are verified by those obtained from threedimensional finite element analyses.Keywords: Circular plate, CPT, Functionally graded, Piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298161 H-Infinity and RST Position Controllers of Rotary Traveling Wave Ultrasonic Motor
Authors: M. Brahim, I. Bahri, Y. Bernard
Abstract:
Traveling Wave Ultrasonic Motor (TWUM) is a compact, precise, and silent actuator generating high torque at low speed without gears. Moreover, the TWUM has a high holding torque without supply, which makes this motor as an attractive solution for holding position of robotic arms. However, their nonlinear dynamics, and the presence of load-dependent dead zones often limit their use. Those issues can be overcome in closed loop with effective and precise controllers. In this paper, robust H-infinity (H∞) and discrete time RST position controllers are presented. The H∞ controller is designed in continuous time with additional weighting filters to ensure the robustness in the case of uncertain motor model and external disturbances. Robust RST controller based on the pole placement method is also designed and compared to the H∞. Simulink model of TWUM is used to validate the stability and the robustness of the two proposed controllers.
Keywords: Piezoelectric motors, position control, H∞, RST, stability criteria, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963160 An Improved Transmission Scheme in Cooperative Communication System
Authors: Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song
Abstract:
Recently developed cooperative diversity scheme enables a terminal to get transmit diversity through the support of other terminals. However, most of the introduced cooperative schemes have a common fault of decreased transmission rate because the destination should receive the decodable compositions of symbols from the source and the relay. In order to achieve high data rate, we propose a cooperative scheme that employs hierarchical modulation. This scheme is free from the rate loss and allows seamless cooperative communication.Keywords: Cooperative communication, hierarchical modulation, high data rate, transmission scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889159 An Investigation of Short Circuit Analysis in Komag Sarawak Operations (KSO) Factory
Authors: M. H. Hairi, H. Zainuddin, M.H.N. Talib, A. Khamis, J. Y. Lichun
Abstract:
Short circuit currents plays a vital role in influencing the design and operation of equipment and power system and could not be avoided despite careful planning and design, good maintenance and thorough operation of the system. This paper discusses the short circuit analysis conducted in KSO briefly comprising of its significances, methods and results. A result sample of the analysis based on a single transformer is detailed in this paper. Furthermore, the results of the analysis and its significances were also discussed and commented.
Keywords: Short circuit currents, Transformer fault current
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402158 Design of Electromagnetic Drive Module for Micro-gyroscope
Authors: Nan-Chyuan Tsai, Jiun-Sheng Liou, Chih-Che Lin, Tuan Li
Abstract:
For micro-gyroscopes, the angular rate detection components have to oscillate forwards and backwards alternatively. An innovative design of micro-electromagnetic drive module is proposed to make a Π-type disc reciprocally and efficiently rotate within a certain of angular interval. Twelve Electromagnetic poles enclosing the thin disc are designed to provide the magnetic drive power. Isotropic etching technique is employed to fabricate the high-aspect-ratio trench, so that the contact angle of wire against trench can be increased and the potential defect of cavities and pores within the wire can be prevented. On the other hand, a Π-type thin disc is designed to conduct the pitch motion as an angular excitation, in addition to spinning, is exerted on the gyroscope. The efficacy of the micro-magnetic drive module is verified by the commercial software, Ansoft Maxewll. In comparison with the conventional planar windings in micro-scale systems, the magnetic drive force is increased by 150%.
Keywords: Micro-gyroscope, micro-electromagnetic, micro actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485157 Application of Artificial Intelligence Techniques for Dissolved Gas Analysis of Transformers-A Review
Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta
Abstract:
The gases generated in oil filled transformers can be used for qualitative determination of incipient faults. The Dissolved Gas Analysis has been widely used by utilities throughout the world as the primarily diagnostic tool for transformer maintenance. In this paper, various Artificial Intelligence Techniques that have been used by the researchers in the past have been reviewed, some conclusions have been drawn and a sequential hybrid system has been proposed. The synergy of ANN and FIS can be a good solution for reliable results for predicting faults because one should not rely on a single technology when dealing with real–life applications.Keywords: Dissolved Gas Analysis, Artificial IntelligenceTechniques, Incipient Faults, Transformer Fault Diagnosis, andHybrid Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4064156 A New Self-stabilizing Algorithm for Maximal 2-packing
Authors: Zhengnan Shi
Abstract:
In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667155 Performance Monitoring of the Refrigeration System with Minimum Set of Sensors
Authors: Radek Fisera, Petr Stluka
Abstract:
This paper describes a methodology for remote performance monitoring of retail refrigeration systems. The proposed framework starts with monitoring of the whole refrigeration circuit which allows detecting deviations from expected behavior caused by various faults and degradations. The subsequent diagnostics methods drill down deeper in the equipment hierarchy to more specifically determine root causes. An important feature of the proposed concept is that it does not require any additional sensors, and thus, the performance monitoring solution can be deployed at a low installation cost. Moreover only a minimum of contextual information is required, which also substantially reduces time and cost of the deployment process.Keywords: Condition monitoring, energy baselining, fault detection and diagnostics, commercial refrigeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879154 Optimal Assessment of Faulted Area around an Industrial Customer for Critical Sag Magnitudes
Authors: Marios N. Moschakis
Abstract:
This paper deals with the assessment of faulted area around an industrial customer connected to a particular electric grid that will cause a certain sag magnitude on this customer. The faulted (critical or exposed) area’s length is calculated by adding all line lengths in the neighborhood of the critical node (customer). The applied method is the so-called Method of Critical Distances. By using advanced short-circuit analysis, the Critical Area can be accurately calculated for radial and meshed power networks due to all symmetrical and asymmetrical faults. For the demonstration of the effectiveness of the proposed methodology, a study case is used.
Keywords: Critical area, fault-induced voltage sags, industrial customers, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645153 State Dependent Riccati Equation Based Roll Autopilot for 122mm Artillery Rocket
Authors: Muhammad Kashif Siddiq, Fang Jian Cheng, Yu Wen Bo
Abstract:
State-dependent Riccati equation based controllers are becoming increasingly popular because of having attractive properties like optimality, stability and robustness. This paper focuses on the design of a roll autopilot for a fin stabilized and canard controlled 122mm artillery rocket using state-dependent Riccati equation technique. Initial spin is imparted to rocket during launch and it quickly decays due to straight tail fins. After the spin phase, the roll orientation of rocket is brought to zero with the canard deflection commands generated by the roll autopilot. Roll autopilot has been developed by considering uncoupled roll, pitch and yaw channels. The canard actuator is modeled as a second-order nonlinear system. Elements of the state weighing matrix for Riccati equation have been chosen to be state dependent to exploit the design flexibility offered by the Riccati equation technique. Simulation results under varying conditions of flight demonstrate the wide operating range of the proposed autopilot.Keywords: Fin stabilized 122mm artillery rocket, Roll Autopilot, Six degree of freedom trajectory model, State-dependent Riccati equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3107152 Visual Inspection of Work Piece with a Complex Shape by Means of Robot Manipulator
Authors: A. Y. Bani Hashim, N. S. A. Ramdan
Abstract:
Inconsistency in manual inspection is real because humans get tired after some time. Recent trends show that automatic inspection is more appealing for mass production inspections. In such as a case, a robot manipulator seems the best candidate to run a dynamic visual inspection. The purpose of this work is to estimate the optimum workspace where a robot manipulator would perform a visual inspection process onto a work piece where a camera is attached to the end effector. The pseudo codes for the planned path are derived from the number of tool transit points, the delay time at the transit points, the process cycle time, and the configuration space that the distance between the tool and the work piece. It is observed that express start and swift end are acceptable in a robot program because applicable works usually in existence during these moments. However, during the mid-range cycle, there are always practical tasks programmed to be executed. For that reason, it is acceptable to program the robot such as that speedy alteration of actuator displacement is avoided. A dynamic visual inspection system using a robot manipulator seems practical for a work piece with a complex shape.
Keywords: Robot manipulator, Visual inspection, Work piece, Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660151 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.
Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627150 Development of Synthetic Jet Air Blower for Air-breathing PEM Fuel Cell
Authors: Jongpil Choi, Eon-Soo Lee, Jae-Huk Jang, Young Ho Seo, Byeonghee Kim
Abstract:
This paper presents a synthetic jet air blower actuated by PZT for air blowing for air-breathing micro PEM fuel cell. The several factors to affect the performance of air-breathing PEM fuel cell such as air flow rate, opening ratio and cathode open type in the cathode side were studied. Especially, an air flow rate is critical condition to improve its performance. In this paper, we developed a synthetic jet air blower to supply a high stoichiometric air flow. The synthetic jet mechanism is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. The flow rate of the fabricated synthetic jet air blower was 400cc/min at 550Hz and its power consumption was very low under 0.3W. The proposed air-breathing PEM fuel cell which installed synthetic jet air blower was higher performance and stability during continuous operation than the air-breathing fuel cell without auxiliary device to supply the air. The results showed that the maximum power density was 188mW/cm2 at 400mA/cm2. This maximum power density and durability were improved more than 40% and 20%, respectively.Keywords: Air-breathing PEM fuel cell, Synthetic jet air blower, Opening ratio, Power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279149 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics
Authors: Nader Ghareeb, R¨udiger Schmidt
Abstract:
Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.Keywords: Finite element analysis, super-element, state-space model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827148 Increasing Replica Consistency Performances with Load Balancing Strategy in Data Grid Systems
Authors: Sarra Senhadji, Amar Kateb, Hafida Belbachir
Abstract:
Data replication in data grid systems is one of the important solutions that improve availability, scalability, and fault tolerance. However, this technique can also bring some involved issues such as maintaining replica consistency. Moreover, as grid environment are very dynamic some nodes can be more uploaded than the others to become eventually a bottleneck. The main idea of our work is to propose a complementary solution between replica consistency maintenance and dynamic load balancing strategy to improve access performances under a simulated grid environment.
Keywords: Consistency, replication, data grid, load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324147 Optimal Placement of Piezoelectric Actuators on Plate Structures for Active Vibration Control Using Modified Control Matrix and Singular Value Decomposition Approach
Authors: Deepak Chhabra, Gian Bhushan, Pankaj Chandna
Abstract:
The present work deals with the optimal placement of piezoelectric actuators on a thin plate using Modified Control Matrix and Singular Value Decomposition (MCSVD) approach. The problem has been formulated using the finite element method using ten piezoelectric actuators on simply supported plate to suppress first six modes. The sizes of ten actuators are combined to outline one actuator by adding the ten columns of control matrix to form a column matrix. The singular value of column control matrix is considered as the fitness function and optimal positions of the actuators are obtained by maximizing it with GA. Vibration suppression has been studied for simply supported plate with piezoelectric patches in optimal positions using Linear Quadratic regulator) scheme. It is observed that MCSVD approach has given the position of patches adjacent to each-other, symmetric to the centre axis and given greater vibration suppression than other previously published results on SVD.
Keywords: Closed loop Average dB gain, Genetic Algorithm (GA), LQR Controller, MCSVD, Optimal positions, Singular Value Decomposition (SVD) Approaches.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3072