Search results for: forecast accuracy unemployment rate.
1379 Occurrence of Adult Taenia saginata in Cattle Slaughtered in Major Abattoirs in Port Harcourt Metropolis, Nigeria
Authors: Lebari B. Gboeloh
Abstract:
The occurrence of adult Taenia saginata in major abattoirs in Port Harcourt metropolis was investigated. Out of 514 cattle investigated, an overall prevalence of 35(6.8%) was recorded. Infected male and female cattle represented 1.2% (6/514) and 5.6% (29/514) of the overall prevalence respectively. There was a statistical significant difference (P< 0.05) in prevalence of adult Taenaia saginata between male and female cattle examined in the study area. Old cattle have a significant (P< 0.05) infestation rate than young ones. Adult Taenia saginata exists in cattle and still remains a public health concern in the study area. Deliberate effort is needed from stake-holders and the Government to design and implement programs that will lead to the prevention and possible eradication of the parasite.
Keywords: Taenia saginata, Adult, Cattle, Occurrence, Port Harcourt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20641378 Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants
Authors: Busra Balli, Tuncay Dikici, Mustafa Toparli
Abstract:
Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments.Keywords: Dental implant, etching, surface modifications, surface morphology, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13271377 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.
Keywords: Land cover, mapping, multi-temporal, spectral indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11111376 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time
Authors: Jyh-Da Wei, Hsin-Chen Tsai
Abstract:
This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14171375 Space Time Processing with Adaptive STBC-OFDM Systems
Authors: F. Sarabchi, M. E. Kalantari
Abstract:
In this paper, Optimum adaptive loading algorithms are applied to multicarrier system with Space-Time Block Coding (STBC) scheme associated with space-time processing based on singular-value decomposition (SVD) of the channel matrix over Rayleigh fading channels. SVD method has been employed in MIMO-OFDM system in order to overcome subchannel interference. Chaw-s and Compello-s algorithms have been implemented to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge. The adaptive loaded SVD-STBC scheme is capable of providing both full-rate and full-diversity for any number of transmit antennas. The effectiveness of these techniques has demonstrated through the simulation of an Adaptive loaded SVDSTBC system, and the comparison shown that the proposed algorithms ensure better performance in the case of MIMO.Keywords: OFDM, MIMO, SVD, STBC, Adaptive Loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19711374 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations
Authors: N. Abbas, S. Lagomarsino, S. Cattari
Abstract:
Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.
Keywords: Foundation uplift, Iso-uplift curves, Resistance domain, Soil yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21761373 On Convergence of Affine Thin Plate Bending Element
Authors: Rado Flajs, Miran Saje
Abstract:
In the present paper the displacement-based nonconforming quadrilateral affine thin plate bending finite element ARPQ4 is presented, derived directly from non-conforming quadrilateral thin plate bending finite element RPQ4 proposed by Wanji and Cheung [19]. It is found, however, that element RPQ4 is only conditionally unisolvent. The new element is shown to be inherently unisolvent. This convenient property results in the element ARPQ4 being more robust and thus better suited for computations than its predecessor. The convergence is proved and the rate of convergence estimated. The mathematically rigorous proof of convergence presented in the paper is based on Stummel-s generalized patch test and the consideration of the element approximability condition, which are both necessary and sufficient for convergence.
Keywords: Quadrilateral thin plate bending element, convergence, generalized patch test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13801372 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach
Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam
Abstract:
Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17751371 Improved Performance of Cooperative Scheme in the Cellular and Broadcasting System
Authors: Hyun-Jee Yang, Bit-Na Kwon, Yong-Jun Kim, Hyoung-Kyu Song
Abstract:
In the cooperative transmission scheme, both the cellular system and broadcasting system are composed. Two cellular base stations (CBSs) communicating with a user in the cell edge use cooperative transmission scheme in the conventional scheme. In the case that the distance between two CBSs and the user is distant, the conventional scheme does not guarantee the quality of the communication because the channel condition is bad. Therefore, if the distance between CBSs and a user is distant, the performance of the conventional scheme is decreased. Also, the bad channel condition has bad effects on the performance. The proposed scheme uses two relays to communicate well with CBSs when the channel condition between CBSs and the user is poor. Using the relay in the high attenuation environment can obtain both advantages of the high bit error rate (BER) and throughput performance.Keywords: Cooperative communications, diversity gain, OFDM, interworking system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17511370 Power Saving System in Green Data Center
Authors: Joon-young Jung, Dong-oh Kang, Chang-seok Bae
Abstract:
Power consumption is rapidly increased in data centers because the number of data center is increased and more the scale of data center become larger. Therefore, it is one of key research items to reduce power consumption in data center. The peak power of a typical server is around 250 watts. When a server is idle, it continues to use around 60% of the power consumed when in use, though vendors are putting effort into reducing this “idle" power load. Servers tend to work at only around a 5% to 20% utilization rate, partly because of response time concerns. An average of 10% of servers in their data centers was unused. In those reason, we propose dynamic power management system to reduce power consumption in green data center. Experiment result shows that about 55% power consumption is reduced at idle time.Keywords: Data Center, Green IT, Management Server, Power Saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16281369 Effect of Sand Particle Transportation in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in a pipe bends caused by particles is a major concern in the oil and gas fields and might cause breakdown to production equipment. This work investigates the effect of sand particle transport in an elbow using computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model is employed to calculate the air/solid particle flow in the elbow. Generic erosion model in Ansys fluent and three particle rebound models are used to predict the erosion rate on the 90° elbows. The model result is compared with experimental data from the open literature validating the CFD-based predictions which reveals that due to the sand particles impinging on the wall of the elbow at high velocity, a point on the pipe elbow were observed to have started turning red due to velocity increase and the maximum erosion locations occur at 48°.
Keywords: Erosion, prediction, elbow, computational fluid dynamics, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5011368 2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries
Authors: C. Leroy, G. Oger, D. Le Touzé, B. Alessandrini
Abstract:
A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.
Keywords: Finite volume method, cartesian grid, compressible solver, complex geometries, Paramesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16101367 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies
Authors: Sambit Prasad Kar, P.Palanisamy
Abstract:
In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.
Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17321366 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651365 Biosorption of Azo Dye Reactive Black B onto Nonviable Biomass of Cladosporium cladosporioides LM1: Thermodynamic, Kinetic and Equilibrium Modeling
Authors: L. A. S. Dionel, B. A. P. Santos, V. C. P. Lopes, L. G. Vasconcelos, M. A. Soares, E. B. Morais
Abstract:
This study investigated the biosorption of the azo dye reactive Black B (RBB) from aqueous solution using the nonviable biomass of Cladosporium cladosporioides LM1. The biosorption systems were carried out in batch mode considering different conditions of initial pH, contact time, temperature, initial dye concentration and biosorbent dosage. Higher removal rate of RBB was obtained at pH 2. Biosorption data were successfully described by pseudo-second-order kinetic model and Langmuir isotherm model with the maximum monolayer biosorption capacity estimated at 71.43 mg/g. The values of thermodynamic parameters such as ∆G°, ∆H° and ∆S° indicated that the biosorption of RBB onto fungal biomass was spontaneous and exothermic in nature. It can be concluded that nonviable biomass of Cladosporium cladosporioides LM1 may be an attractive low-cost biosorbent for the removal of azo dye RBB from aqueous solution.
Keywords: Color removal, isotherms and kinetics models, thermodynamic studies, fungus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8561364 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.
Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2971363 Removal of Lead in High Rate Activated Sludge System
Authors: Mamdouh Y. Saleh, Gaber EL Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda
Abstract:
The heavy metals pollution in water, sediments and fish of Lake Manzala affected form the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200 and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L Alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56% respectively.
Keywords: Industrial wastewater, Activated sludge, BOD5, Lead, Alum salt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25731362 Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques
Authors: S. Visetpotjanakit, C. Khrautongkieo
Abstract:
Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.
Keywords: International atomic energy agency, proficiency test, radiation monitoring, seawater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8241361 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition
Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen
Abstract:
An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18431360 On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs
Authors: Chien-Hua Lee, Cheng-Yi Chen
Abstract:
The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.
Keywords: homogeneous bilinear system, constrained input, time-delay, uncertainty, transient response, decay rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16091359 Preparation of Homogeneous Dense Composite of Zirconia and Alumina (ZTA)using Colloidal Filtration
Authors: H. Wakily, M. Mehrali, H. S. C. Metselaar
Abstract:
Homogeneous composites of alumina and zirconia with a small amount of MgO (<1 wt %) were prepared by colloidal filtration. The object of using ZrO2 (15wt %) was to provide zirconia toughened alumina (ZTA). Suspensions of alumina and Zirconia with various solid loadings and various concentrations of Dolapix CE64 as surfactant were studied. The stability of these suspensions was investigated using rheological measurements. The optimum amount of using Dolapix was 0.8wt% for ZTA containing MgO suspension which gave low apparent viscosity in basic area (100 mPa s at shear rate of 50 s-1). The satisfactory mixtures were made into sample pallets using colloidal filtration. The process was completed with pressureless sintering in suitable temperature. Phase, grain size and qualitative compositional analysis were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM) images. ZTA containing 0.05 wt% MgO shows the lowest grain size for alumina around 0.5 μm. Densification studies show that near full densities (>99%) were obtained for ZTA ceramic containing 0.05 wt% MgO in 1500 °C.Keywords: Colloidal filtration, Dolapix, MgO, Zirconiatoughened alumina.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29951358 Fuzzy Logic Based Improved Range Free Localization for Wireless Sensor Networks
Authors: Ashok Kumar, Vinod Kumar
Abstract:
Wireless Sensor Networks (WSNs) are used to monitor/observe vast inaccessible regions through deployment of large number of sensor nodes in the sensing area. For majority of WSN applications, the collected data needs to be combined with geographic information of its origin to make it useful for the user; information received from remote Sensor Nodes (SNs) that are several hops away from base station/sink is meaningless without knowledge of its source. In addition to this, location information of SNs can also be used to propose/develop new network protocols for WSNs to improve their energy efficiency and lifetime. In this paper, range free localization protocols for WSNs have been proposed. The proposed protocols are based on weighted centroid localization technique, where the edge weights of SNs are decided by utilizing fuzzy logic inference for received signal strength and link quality between the nodes. The fuzzification is carried out using (i) Mamdani, (ii) Sugeno, and (iii) Combined Mamdani Sugeno fuzzy logic inference. Simulation results demonstrate that proposed protocols provide better accuracy in node localization compared to conventional centroid based localization protocols despite presence of unintentional radio frequency interference from radio frequency (RF) sources operating in same frequency band.
Keywords: localization, range free, received signal strength, link quality indicator, Mamdani fuzzy logic inference, Sugeno fuzzy logic inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26321357 Influence of Gas-Liquid Separator Design on Performance of Airlift Bioreactors
Authors: Mateus N. Esperança, Marcel O. Cerri, Alberto C. Badino
Abstract:
The performance of airlift bioreactors are closely related with their geometry, especially the gas-liquid separator design. In this study, the influence of the gas-liquid separator geometry on oxygen transfer and gas hold-up was evaluated in 10-L concentric-tube airlift bioreactor operating with distilled water and xanthan gum solution. The specific airflow rate (ɸAIR) exhibited the higher effect on the oxygen transfer coefficient (kLa) for both fluids. While the gas-liquid separator openness angle (α) and liquid volume fraction on the gas-liquid separator (VGLS) have presented opposite effects on oxygen mass transfer, they affected negatively the global gas hold-up of distilled water system. The best degassing zone geometry corresponded to a 90° openness angle with 10% of the liquid on it.
Keywords: Airlift bioreactor, gas holdup, gas-liquid separator, oxygen transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22071356 Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images
Authors: G.Wiselin Jiji, L.Ganesan
Abstract:
Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.Keywords: Fuzzy Texture Unit, Fuzzy Texture Spectrum, andPattern Recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011355 Effect of Secondary Curvature on Mixing Characteristic within Constant Circular Tubes
Authors: Minh Tuan Nguyen, Sang-Wook Lee
Abstract:
In this study, numerical simulations on laminar flow in sinusoidal wavy shaped tubes were conducted for mean Reynolds number of 250, which is in the range of physiological flow-rate and investigated flow structures, pressure distribution and particle trajectories both in steady and periodic inflow conditions. For extensive comparisons, various wave lengths and amplitudes of sine function for geometry of tube models were employed. The results showed that small amplitude secondary curvature has significant influence on the nature of flow patterns and particle mixing mechanism. This implies that characterizing accurate geometry is essential in accurate predicting of in vivo hemodynamics and may motivate further study on any possibility of reflection of secondary flow on vascular remodeling and pathophysiology.Keywords: Secondary curvature, Sinusoidal wavy tubes, Mixing Characteristics, Pulsatile flow, Hemodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15941354 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.
Keywords: Data fusion, Gaussian process regression, signal denoise, temporal extrapolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5011353 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.
Keywords: CNN, deep-learning, facial emotion recognition, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7101352 Solution of Two-Point Nonlinear Boundary Problems Using Taylor Series Approximation and the Ying Buzu Shu Algorithm
Authors: U. C. Amadi, N. A. Udoh
Abstract:
One of the major challenges faced in solving initial and boundary problems is how to find approximate solutions with minimal deviation from the exact solution without so much rigor and complications. The Taylor series method provides a simple way of obtaining an infinite series which converges to the exact solution for initial value problems and this method of solution is somewhat limited for a two point boundary problem since the infinite series has to be truncated to include the boundary conditions. In this paper, the Ying Buzu Shu algorithm is used to solve a two point boundary nonlinear diffusion problem for the fourth and sixth order solution and compare their relative error and rate of convergence to the exact solution.
Keywords: Ying Buzu Shu, nonlinear boundary problem, Taylor series algorithm, infinite series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4581351 Kinetics of Polyethylene Terephthalate (PET)and Polystyrene (PS) Dynamic Pyrolysis
Authors: S.M. Al-Salem, P. Lettieri
Abstract:
Thermo-chemical treatment (TCT) such as pyrolysis is getting recognized as a valid route for (i) materials and valuable products and petrochemicals recovery; (ii) waste recycling; and (iii) elemental characterization. Pyrolysis is also receiving renewed attention for its operational, economical and environmental advantages. In this study, samples of polyethylene terephthalate (PET) and polystyrene (PS) were pyrolysed in a microthermobalance reactor (using a thermogravimetric-TGA setup). Both polymers were prepared and conditioned prior to experimentation. The main objective was to determine the kinetic parameters of the depolymerization reactions that occur within the thermal degradation process. Overall kinetic rate constants (ko) and activation energies (Eo) were determined using the general kinetics theory (GKT) method previously used by a number of authors. Fitted correlations were found and validated using the GKT, errors were within ± 5%. This study represents a fundamental step to pave the way towards the development of scaling relationship for the investigation of larger scale reactors relevant to industry.Keywords: Kinetics, PET, PS, Pyrolysis, Recycling, Petrochemicals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37391350 Feature Analysis of Predictive Maintenance Models
Authors: Zhaoan Wang
Abstract:
Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.
Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005