Search results for: Floor estimation algorithm
1229 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051228 An Edit-Distance Algorithm to Detect Correlated Attacks in Distributed Systems
Authors: Sule Simsek
Abstract:
Intrusion detection systems (IDS)are crucial components of the security mechanisms of today-s computer systems. Existing research on intrusion detection has focused on sequential intrusions. However, intrusions can also be formed by concurrent interactions of multiple processes. Some of the intrusions caused by these interactions cannot be detected using sequential intrusion detection methods. Therefore, there is a need for a mechanism that views the distributed system as a whole. L-BIDS (Lattice-Based Intrusion Detection System) is proposed to address this problem. In the L-BIDS framework, a library of intrusions and distributed traces are represented as lattices. Then these lattices are compared in order to detect intrusions in the distributed traces.Keywords: Attack graph, distributed, edit-distance, misuse detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13881227 Aspect based Reusable Synchronization Schemes
Authors: Nathar Shah
Abstract:
Concurrency and synchronization are becoming big issues as every new PC comes with multi-core processors. A major reason for Object-Oriented Programming originally was to enable easier reuse: encode your algorithm into a class and thoroughly debug it, then you can reuse the class again and again. However, when we get to concurrency and synchronization, this is often not possible. Thread-safety issues means that synchronization constructs need to be entangled into every class involved. We contributed a detailed literature review of issues and challenges in concurrent programming and present a methodology that uses the Aspect- Oriented paradigm to address this problem. Aspects will allow us to extract the synchronization concerns as schemes to be “weaved in" later into the main code. This allows the aspects to be separately tested and verified. Hence, the functional components can be weaved with reusable synchronization schemes that are robust and scalable.Keywords: Aspect-orientation, development methodologysoftware concurrency, synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12461226 Modeling of a UAV Longitudinal Dynamics through System Identification Technique
Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad
Abstract:
System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc. This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.
Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11381225 Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects
Authors: Chokri Jebali, Noureddine Boulejfen, Ali Gharsallah, Fadhel M. Ghannouchi
Abstract:
In this paper, a system level behavioural model for RF power amplifier, which exhibits memory effects, and based on multibranch system is proposed. When higher order terms are included, the memory polynomial model (MPM) exhibits numerical instabilities. A set of memory orthogonal polynomial model (OMPM) is introduced to alleviate the numerical instability problem associated to MPM model. A data scaling and centring algorithm was applied to improve the power amplifier modeling accuracy. Simulation results prove that the numerical instability can be greatly reduced, as well as the model precision improved with nonlinear model.Keywords: power amplifier, orthogonal model, polynomialmodel , memory effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22771224 Role of GIS in Distribution Power Systems
Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam
Abstract:
With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.
Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55051223 Segmentation of Ascending and Descending Aorta in CTA Images
Authors: H. Özkan
Abstract:
In this study, a new and fast algorithm for Ascending Aorta (AscA) and Descending Aorta (DesA) segmentation is presented using Computed Tomography Angiography images. This process is quite important especially at the detection of aortic plaques, aneurysms, calcification or stenosis. The applied method has been carried out at four steps. At first step, lung segmentation is achieved. At the second one, Mediastinum Region (MR) is detected to use in the segmentation. At the third one, images have been applied optimal threshold and components which are outside of the MR were removed. Lastly, identifying and segmentation of AscA and DesA have been carried out. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.Keywords: Ascending aorta (AscA), Descending aorta (DesA), Computed tomography angiography (CTA), Computer aided detection (CAD), Segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331222 Techniques with Statistics for Web Page Watermarking
Authors: Mohamed Lahcen BenSaad, Sun XingMing
Abstract:
Information hiding, especially watermarking is a promising technique for the protection of intellectual property rights. This technology is mainly advanced for multimedia but the same has not been done for text. Web pages, like other documents, need a protection against piracy. In this paper, some techniques are proposed to show how to hide information in web pages using some features of the markup language used to describe these pages. Most of the techniques proposed here use the white space to hide information or some varieties of the language in representing elements. Experiments on a very small page and analysis of five thousands web pages show that these techniques have a wide bandwidth available for information hiding, and they might form a solid base to develop a robust algorithm for web page watermarking.Keywords: Digital Watermarking, Information Hiding, Markup Language, Text watermarking, Software Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17951221 SPH Method used for Flow Predictions at a Turgo Impulse Turbine: Comparison with Fluent
Authors: Phoevos K. Koukouvinis, John S. Anagnostopoulos, Dimitris E. Papantonis
Abstract:
This work is an attempt to use the standard Smoothed Particle Hydrodynamics methodology for the simulation of the complex unsteady, free-surface flow in a rotating Turgo impulse water turbine. A comparison of two different geometries was conducted. The SPH method due to its mesh-less nature is capable of capturing the flow features appearing in the turbine, without diffusion at the water/air interface. Furthermore results are compared with a commercial CFD package (Fluent®) and the SPH algorithm proves to be capable of providing similar results, in much less time than the mesh based CFD program. A parametric study was also performed regarding the turbine inlet angle.Keywords: Smoothed Particle Hydrodynamics, Mesh-lessmethods, Impulse turbines, Turgo turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26411220 Earthquake Vulnerability and Repair Cost Estimation of Masonry Buildings in the Old City Center of Annaba, Algeria
Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente
Abstract:
The seismic risk mitigation from the perspective of the old buildings stock is truly essential in Algerian urban areas, particularly those located in seismic prone regions, such as Annaba city, and which the old buildings present high levels of degradation associated with no seismic strengthening and/or rehabilitation concerns. In this sense, the present paper approaches the issue of the seismic vulnerability assessment of old masonry building stocks through the adaptation of a simplified methodology developed for a European context area similar to that of Annaba city, Algeria. Therefore, this method is used for the first level of seismic vulnerability assessment of the masonry buildings stock of the old city center of Annaba. This methodology is based on a vulnerability index that is suitable for the evaluation of damage and for the creation of large-scale loss scenarios. Over 380 buildings were evaluated in accordance with the referred methodology and the results obtained were then integrated into a Geographical Information System (GIS) tool. Such results can be used by the Annaba city council for supporting management decisions, based on a global view of the site under analysis, which led to more accurate and faster decisions for the risk mitigation strategies and rehabilitation plans.Keywords: Damage scenarios, masonry buildings, old city center, seismic vulnerability, vulnerability index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20961219 Generating Frequent Patterns through Intersection between Transactions
Authors: M. Jamali, F. Taghiyareh
Abstract:
The problem of frequent itemset mining is considered in this paper. One new technique proposed to generate frequent patterns in large databases without time-consuming candidate generation. This technique is based on focusing on transaction instead of concentrating on itemset. This algorithm based on take intersection between one transaction and others transaction and the maximum shared items between transactions computed instead of creating itemset and computing their frequency. With applying real life transactions and some consumption is taken from real life data, the significant efficiency acquire from databases in generation association rules mining.Keywords: Association rules, data mining, frequent patterns, shared itemset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14041218 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network
Authors: Farzaneh Ahmadzadeh
Abstract:
Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13771217 A Technique for Reachability Graph Generation for the Petri Net Models of Parallel Processes
Authors: Farooq Ahmad, Hejiao Huang, Xiaolong Wang
Abstract:
Reachability graph (RG) generation suffers from the problem of exponential space and time complexity. To alleviate the more critical problem of time complexity, this paper presents the new approach for RG generation for the Petri net (PN) models of parallel processes. Independent RGs for each parallel process in the PN structure are generated in parallel and cross-product of these RGs turns into the exhaustive state space from which the RG of given parallel system is determined. The complexity analysis of the presented algorithm illuminates significant decrease in the time complexity cost of RG generation. The proposed technique is applicable to parallel programs having multiple threads with the synchronization problem.Keywords: Parallel processes, Petri net, reachability graph, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20141216 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis
Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon
Abstract:
In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30781215 Well-Being Inequality Using Superimposing Satisfaction Waves: Heisenberg Uncertainty in Behavioural Economics and Econometrics
Authors: Okay Gunes
Abstract:
In this article, a new method is proposed for the measuring of well-being inequality through a model composed of superimposing satisfaction waves. The displacement of households’ satisfactory state (i.e. satisfaction) is defined in a satisfaction string. The duration of the satisfactory state for a given period is measured in order to determine the relationship between utility and total satisfactory time, itself dependent on the density and tension of each satisfaction string. Thus, individual cardinal total satisfaction values are computed by way of a one-dimensional form for scalar sinusoidal (harmonic) moving wave function, using satisfaction waves with varying amplitudes and frequencies which allow us to measure wellbeing inequality. One advantage to using satisfaction waves is the ability to show that individual utility and consumption amounts would probably not commute; hence, it is impossible to measure or to know simultaneously the values of these observables from the dataset. Thus, we crystallize the problem by using a Heisenberg-type uncertainty resolution for self-adjoint economic operators. We propose to eliminate any estimation bias by correlating the standard deviations of selected economic operators; this is achieved by replacing the aforementioned observed uncertainties with households’ perceived uncertainties (i.e. corrected standard deviations) obtained through the logarithmic psychophysical law proposed by Weber and Fechner.
Keywords: Heisenberg Uncertainty Principle, superimposing satisfaction waves, Weber–Fechner law, well-being inequality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20551214 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access
Authors: A. Asgharzadeh, M. Maroufi
Abstract:
5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.
Keywords: UFMC, IDMA, 5G, subband.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4701213 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals
Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman
Abstract:
Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981212 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen
Abstract:
In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.
Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18651211 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City
Authors: Khadija Raissi, Bechir Ben Gouissem
Abstract:
In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.
Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10271210 University of Jordan Case Tool (Uj-Case- Tool) for Database Reverse Engineering
Authors: Fawaz A. Masoud, Heba_tallah Khattab, Mahmoud Al-Karazoon
Abstract:
The database reverse engineering problems and solving processes are getting mature, even though, the academic community is facing the complex problem of knowledge transfer, both in university and industrial contexts. This paper presents a new CASE tool developed at the University of Jordan which addresses an efficient support of this transfer, namely UJ-CASE-TOOL. It is a small and self-contained application exhibiting representative problems and appropriate solutions that can be understood in a limited time. It presents an algorithm that describes the developed academic CASE tool which has been used for several years both as an illustration of the principles of database reverse engineering and as an exercise aimed at academic and industrial students.Keywords: Reverse engineering, ERD, DBRE, case tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631209 A New Predictor of Coding Regions in Genomic Sequences using a Combination of Different Approaches
Authors: Aníbal Rodríguez Fuentes, Juan V. Lorenzo Ginori, Ricardo Grau Ábalo
Abstract:
Identifying protein coding regions in DNA sequences is a basic step in the location of genes. Several approaches based on signal processing tools have been applied to solve this problem, trying to achieve more accurate predictions. This paper presents a new predictor that improves the efficacy of three techniques that use the Fourier Transform to predict coding regions, and that could be computed using an algorithm that reduces the computation load. Some ideas about the combination of the predictor with other methods are discussed. ROC curves are used to demonstrate the efficacy of the proposed predictor, based on the computation of 25 DNA sequences from three different organisms.
Keywords: Bioinformatics, Coding region prediction, Computational load reduction, Digital Signal Processing, Fourier Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691208 Sequential Partitioning Brainbow Image Segmentation Using Bayesian
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.
Keywords: Brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22601207 Scene Adaptive Shadow Detection Algorithm
Authors: Mohammed Ibrahim M, Anupama R.
Abstract:
Robustness is one of the primary performance criteria for an Intelligent Video Surveillance (IVS) system. One of the key factors in enhancing the robustness of dynamic video analysis is,providing accurate and reliable means for shadow detection. If left undetected, shadow pixels may result in incorrect object tracking and classification, as it tends to distort localization and measurement information. Most of the algorithms proposed in literature are computationally expensive; some to the extent of equalling computational requirement of motion detection. In this paper, the homogeneity property of shadows is explored in a novel way for shadow detection. An adaptive division image (which highlights homogeneity property of shadows) analysis followed by a relatively simpler projection histogram analysis for penumbra suppression is the key novelty in our approach.
Keywords: homogeneity, penumbra, projection histogram, shadow correction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19021206 An Online Evaluation of Operating Reserve for System Security
Authors: Le-Ren Chang-Chien, Yin-Juin Lin, Chin-Chung Wu
Abstract:
Utilities use operating reserve for frequency regulation.To ensure that the operating frequency and system security are well maintained, the operating grid codes always specify that the reserve quantity and response rate should meet some prescribed levels. This paper proposes a methodology to evaluate system's contingency reserve for an isolated power network. With the presented algorithm to estimate system's frequency response characteristic, an online allocation of contingency reserve would be feasible to meet the grid codes for contingency operation. Test results from the simulated conditions, and from the actual operating data verify the merits of the proposed methodology to system's frequency control, and security.
Keywords: Contingency, frequency control, operating reserve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481205 Improved MARS Ciphering Using a Metamorphic-Enhanced Function
Authors: Moataz M. Naguib, Hatem Khater, A. Baith Mohamed
Abstract:
MARS is a shared-key (symmetric) block cipher algorithm supporting 128-bit block size and a variable key size of between 128 and 448 bits. MARS has a several rounds of cryptographic core that is designed to take advantage of the powerful results for improving security/performance tradeoff over existing ciphers. In this work, a new function added to improve the ciphering process it is called, Meta-Morphic function. This function use XOR, Rotating, Inverting and No-Operation logical operations before and after encryption process. The aim of these operations is to improve MARS cipher process and makes a high confusion criterion for the Ciphertext.
Keywords: AES, MARS, Metamorphic, Cryptography, Block Cipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20431204 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.
Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21221203 Image Segment Matching Using Affine- Invariant Regions
Authors: Ibrahim El rube'
Abstract:
In this paper, a method for matching image segments using triangle-based (geometrical) regions is proposed. Triangular regions are formed from triples of vertex points obtained from a keypoint detector (SIFT). However, triangle regions are subject to noise and distortion around the edges and vertices (especially acute angles). Therefore, these triangles are expanded into parallelogramshaped regions. The extracted image segments inherit an important triangle property; the invariance to affine distortion. Given two images, matching corresponding regions is conducted by computing the relative affine matrix, rectifying one of the regions w.r.t. the other one, then calculating the similarity between the reference and rectified region. The experimental tests show the efficiency and robustness of the proposed algorithm against geometrical distortion.Keywords: Image matching, key point detection, affine invariant, triangle-shaped segments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18911202 Angular-Coordinate Driven Radial Tree Drawing
Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov
Abstract:
We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.
Keywords: Radial Tree Drawing, Real-Time Visualization, Angular Coordinates, Large Trees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26011201 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)
Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed
Abstract:
High Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20- 60 and 6-18 μg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 μg/ml and for 6S were 0.3672 and 1.2238 μg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.
Keywords: Ginger, 6-gingerol, HPLC, 6-shogaol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34231200 Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation
Authors: Marzieh Dosti, Alireza Nazemi
Abstract:
In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the resulting scheme is that the algorithm is very simple so it is very easy to implement. The results of numerical experiments are presented, and are compared with analytical solutions by calculating errors L2 and L∞ norms to confirm the good accuracy of the presented scheme.
Keywords: Cubic B-spline, quasi-interpolation, collocation method, second-order hyperbolic telegraph equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801