Search results for: transfer of development rights
5038 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds
Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff
Abstract:
A salinity gradient solar pond is a free energy source system for collecting, convertingand storing solar energy as heat. In thispaper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transferbehaviour of salinity gradient solar pond. MATLAB codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results arefound to be in good agreement.
Keywords: Finite Difference method, Salt-gradient solar-pond, Solar energy, Transient heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49795037 Reviewing the Relation of Language and Minorities' Rights
Authors: Mohsen Davarzani, Ehsan Lame, Mohammad Taghi Hassan Zadeh
Abstract:
Language is considered as a powerful and outstanding feature of ethnicity. However, humiliating and prohibiting using human language is one the most heinous and brutal acts in the form of racism. In other words, racism can be a product of physiological humiliations and discrimination, such as skin color, and can also be resulted from ethnic humiliation and discrimination such as language, customs and so on. Ethnic and racial discrimination is one of the main problems of the world that minorities and occasionally the majority have suffered from. Nowadays, few states can be found in which all individuals and its citizens are of the same race and ethnicity, culture and language. In these countries, referred to as the multinational states, (eg, Iran, Switzerland, India, etc.), there are the communities and groups which have their own linguistic, cultural and historical characteristics. Characteristics of human rights issues, diversity of issues and plurality of meanings indicate that they appear in various aspects. The states are obliged to respect, as per national and international obligations, the rights of all citizens from different angles, especially different groups that require special attention in order of the particular aspects such as ethnicity, religious and political minorities, children, women, workers, unions and in case the states are in breach of any of these items, they are faced with challenges in local, regional or international fields.Keywords: Law, language, minorities, ethnicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7635036 Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, NM Adam, S. Masuri
Abstract:
Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.
Keywords: Ribs channel, Turbulent flow, Heat transfer enhancement, Recirculation flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32085035 New Investigation of the Exchange Effects Role on the Elastic and Inelastic Scattering of α-Particles on 9Be
Authors: A. Amar, N. Burtebayev, Zh. K. Kerimkulov, M. K. Baktybayev, J. T. Burtebayeva, A. K. Morzabayev, S. K. Sakhiev, N. Saduyev, S. B. Sakuta
Abstract:
Elastic and inelastic scattering of α-particles by 9Be nuclei at different incident energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by 9Be at different energies have been obtained. Coupled Reaction Channel (CRC) of elastic scattering, inelastic scattering and transfer reaction has been calculated using Fresco Code. The effect of involving CRC calculations on the analysis of differential cross section has been studied. The transfer reaction of (5He) in the reaction 9Be(α,9Be)α has been studied. The spectroscopic factor of 9Be≡α+5He has been extracted.
Keywords: Elastic scattering of α-particles, Optical model parameters, Coupled Reaction Channel, the transfer reaction of (5He), the spectroscopic factor of 9Be≡α+5He.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29545034 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample
Authors: Suwimon Saneewong Na Ayuttaya
Abstract:
This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.Keywords: Electrohydrodynamics, swirling flow, convective heat transfer, solid sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10865033 Multilayer Thermal Screens for Greenhouse Insulation
Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel
Abstract:
Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.
Keywords: Energy-saving thermal screen, greenhouse covering material, heat transfer coefficient, hot box.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6235032 Harrison’s Stolen: Addressing Aboriginal and Indigenous Islanders Human Rights
Authors: M. Shukry
Abstract:
According to the United Nations Declaration of Human Rights in 1948, every human being is entitled to rights in life that should be respected by others and protected by the state and community. Such rights are inherent regardless of colour, ethnicity, gender, religion or otherwise, and it is expected that all humans alike have the right to live without discrimination of any sort. However, that has not been the case with Aborigines in Australia. Over a long period of time, the governments of the State and the Territories and the Australian Commonwealth denied the Aboriginal and Indigenous inhabitants of the Torres Strait Islands such rights. Past Australian governments set policies and laws that enabled them to forcefully remove Indigenous children from their parents, which resulted in creating lost generations living the trauma of the loss of cultural identity, alienation and even their own selfhood. Intending to reduce that population of natives and their Aboriginal culture while, on the other hand, assimilate them into mainstream society, they gave themselves the right to remove them from their families with no hope of return. That practice has led to tragic consequences due to the trauma that has affected those children, an experience that is depicted by Jane Harrison in her play Stolen. The drama is the outcome of a six-year project on lost children and which was first performed in 1997 in Melbourne. Five actors only appear on the stage, playing the role of all the different characters, whether the main protagonists or the remaining cast, present or non-present ones as voices. The play outlines the life of five children who have been taken from their parents at an early age, entailing a disastrous negative impact that differs from one to the other. Unknown to each other, what connects between them is being put in a children’s home. The purpose of this paper is to analyse the play’s text in light of the 1948 Declaration of Human Rights, using it as a lens that reflects the atrocities practiced against the Aborigines. It highlights how such practices formed an outrageous violation of those natives’ rights as human beings. Harrison’s dramatic technique in conveying the children’s experiences is through a non-linear structure, fluctuating between past and present that are linked together within each of the five characters, reflecting their suffering and pain to create an emotional link between them and the audience. Her dramatic handling of the issue by fusing tragedy with humour as well as symbolism is a successful technique in revealing the traumatic memory of those children and their present life. The play has made a difference in commencing to address the problem of the right of all children to be with their families, which renders the real meaning of having a home and an identity as people.
Keywords: Aboriginal, audience, Australia, children, culture, drama, home, human rights, identity, indigenous, Jane Harrison, memory, scenic effects, setting, stage, stage directions, Stolen, trauma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16855031 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11555030 Evaluation of Optimal Transfer Capability in Power System Interconnection
Authors: Jin-O Kim, Hyun-Il Son
Abstract:
As the electrical power industry is restructured, the electrical power exchange is becoming extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost-optimization method in this paper, and is compared with well-being method and risk-benefit method. This paper proposes the optimal transfer capability of HVDC system between mainland and a separated island in Korea through these three methods. These methods will consider production cost, wheeling charge through HVDC system and outage cost with one depth (N-1 contingency)
Keywords: ATC, power system interconnection, well-being method, cost-optimization method, risk-benefit analysis, outage cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16255029 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model
Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi
Abstract:
Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.
Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28265028 Laminar Impinging Jet Heat Transfer for Curved Plates
Authors: A. M. Tahsini, S. Tadayon Mousavi
Abstract:
The purpose of the present study is to analyze the effect of the target plate-s curvature on the heat transfer in laminar confined impinging jet flows. Numerical results from two dimensional compressible finite volume solver are compared between three different shapes of impinging plates: Flat, Concave and Convex plates. The remarkable result of this study proves that the stagnation Nusselt number in laminar range of Reynolds number based on the slot width is maximum in convex surface and is minimum in concave plate. These results refuse the previous data in literature stating the amount of the stagnation Nusselt number is greater in concave surface related to flat plate configuration.Keywords: Concave, Convex, Heat transfer, Impinging jet, Laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30105027 The Impact of Local Decision-Making in Regional Development Schemes on the Achievement of Efficiency in EU Funds
Authors: Kuyucu Helvacioglu Asli Deniz, Tektas Arzu
Abstract:
European Union candidate status provides a strong motivation for decision-making in the candidate countries in shaping the regional development policy where there is an envisioned transfer of power from center to the periphery. The process of Europeanization anticipates the candidate countries configure their regional institutional templates in the context of the requirements of the European Union policies and introduces new instruments of incentive framework of enlargement to be employed in regional development schemes. It is observed that the contribution of the local actors to the decision making in the design of the allocation architectures enhances the efficiency of the funds and increases the positive effects of the projects funded under the regional development objectives. This study aims at exploring the performances of the three regional development grant schemes in Turkey, established and allocated under the pre-accession process with a special emphasis given to the roles of the national and local actors in decision-making for regional development. Efficiency analyses have been conducted using the DEA methodology which has proved to be a superior method in comparative efficiency and benchmarking measurements. The findings of this study as parallel to similar international studies, provides that the participation of the local actors to the decision-making in funding contributes both to the quality and the efficiency of the projects funded under the EU schemes.Keywords: Efficiency, European Union Funds, RegionalDevelopment, Turkey
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16435026 Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation
Authors: A.S.N.Murti, D.R.V.S.R.K. Sastry, P.K. Kameswaran, T. Poorna Kantha
Abstract:
In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.Keywords: Radiation, Chemical reaction, Double dispersion, Mixed convection, Heat and Mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17135025 A Small-Scale Knowledge Management System for a Service-Oriented Department
Authors: Eliza Mazmee Mazlan, K.S. Savita, Amir Hamzah Zalfakhar
Abstract:
This paper demonstrates an effort of a serviceoriented engineering department in improving the sharing and transfer of knowledge. Although the department consist of only six employees, but it provides services in various chemical application in an oil and gas business. The services provided span across Asia Pacific region mainly Indonesia, Myanmar, Vietnam, Brunei, Thailand and Singapore. Currently there are no effective tools or integrated systems that support the sharing or transfer and maintenance of knowledge so the department has considered preserving this valuable knowledge by developing a Knowledge Management System (KMS). This paper presents the development of a KMS to support the sharing of knowledge in a service-oriented engineering department of an oil and gas company. The embedded features in the KMS like blog and forum will encourage iterative process of knowledge sharing among the employees in the department. The information and knowledge being shared, discussed and communicated will be then achieved for future re-use. The re-use of the knowledge allows the department to reduce redundant efforts in providing consistent, up-to-date and cost effective of the best solution to the its clients.Keywords: Knowledge management, knowledge managementsystem, knowledge barrier, knowledge sharing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14635024 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method
Authors: A. Ashok, K.Satapathy, B. Prerana Nashine
Abstract:
The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.Keywords: Radiative transfer equation, finite volume method, conduction, transient radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15445023 Evaluation of Coupling Factor in RF Inductively Coupled Systems
Authors: Rômulo Volpato, Filipe Ramos, Paulo Crepaldi, Michel Santana, Tales C Pimenta
Abstract:
This work presents an approach for the measurement of mutual inductance on near field inductive coupling. The mutual inductance between inductive circuits allows the simulation of energy transfer from reader to tag, that can be used in RFID and powerless implantable devices. It also allows one to predict the maximum voltage in the tag of the radio-frequency system.Keywords: RFID, Inductive Coupling, Energy Transfer, Implantable Device
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23275022 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection
Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf
Abstract:
Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8055021 CFD Modeling of High Temperature Seal Chamber
Authors: Mikhail P. Strongin, Ragupathi Soundararajan
Abstract:
The purpose of this work is fast design optimization of the seal chamber. The study includes the mass transfer between lower and upper chamber on seal chamber for hot water application pumps. The use of Fluent 12.1 commercial code made it possible to capture complex flow with heat-mass transfer, radiation, Tailor instability, and buoyancy effect. Realizable k-epsilon model was used for turbulence modeling. Radiation heat losses were taken into account. The temperature distribution at seal region is predicted with respect to heat addition. Results show the possibilities of the model simplifications by excluding the water domain in low chamber from calculations. CFD simulations permit to improve seal chamber design to meet target water temperature around the seal. This study can be used for the analysis of different seal chamber configurations.Keywords: CFD, heat transfer, seal chamber, high temperature water
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16755020 A MATLAB Simulink Library for Transient Flow Simulation of Gas Networks
Authors: M. Behbahani-Nejad, A. Bagheri
Abstract:
An efficient transient flow simulation for gas pipelines and networks is presented. The proposed transient flow simulation is based on the transfer function models and MATLABSimulink. The equivalent transfer functions of the nonlinear governing equations are derived for different types of the boundary conditions. Next, a MATLAB-Simulink library is developed and proposed considering any boundary condition type. To verify the accuracy and the computational efficiency of the proposed simulation, the results obtained are compared with those of the conventional finite difference schemes (such as TVD, method of lines, and other finite difference implicit and explicit schemes). The effects of the flow inertia and the pipeline inclination are incorporated in this simulation. It is shown that the proposed simulation has a sufficient accuracy and it is computationally more efficient than the other methods.Keywords: Gas network, MATLAB-Simulink, transfer functions, transient flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64865019 New Concept for the Overall use of Renewable Energy
Authors: Chang-Hsien Tai, Uzu-Kuei Hsu, Jr-Ming Miao, Yong-Jhou Lin
Abstract:
The development and application of wind power for renewable energy has attracted growing interest in recent years. Renewable energy sources are attracting much alteration as they can reduce both environmental damage and dependence on fossil fuels. With the growing need for sustainable energy supplies, a case is made for decentralized, stand-alone power supplies (SAPS) as an alternative to power grids. In the era which traditional petroleum energy resource decreasing and the green house affect significant increasing, the development and usage of regenerative resources is inevitable. Due to the contribution of the pioneers, the development of regenerative resources already has a remarkable achievement; however, in the view of economy and quantity, it is still a long road for regenerative energy to replace traditional petroleum energy. In our prospective, in stead of investigate larger regenerative energy equipment, it is much wiser to think about the blind side and breakthrough of the current technique.Keywords: regenerative resources, hybrid system, transfer, storage, phase change
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16615018 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer
Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu
Abstract:
Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power Field Effect Transistor (FET) was was small. The power efficiencies were 0.44-0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.
Keywords: E-textile, flexible coils, flexible antennas, Litz wire, wireless power transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885017 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction
Authors: Motahar Reza, Rajni Chahal, Neha Sharma
Abstract:
This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.
Keywords: Boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17905016 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity
Authors: Chia-Ling Chang, Chung-Sheng Liao
Abstract:
The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28135015 Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction
Authors: T. G. Emam
Abstract:
The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.
Keywords: Heat and mass transfer, stretching surface, chemical reaction, porus medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18755014 Effects of Roughness Elements on Heat Transfer during Natural Convection
Abstract:
The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behaviors were studied using computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar flow in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2.0 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to maximum decrease in the heat transfer as 7% to 17% respectively compared to smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms and streamlines.Keywords: Natural convection, Rayleigh number, surface roughness, Nusselt number, Lattice Boltzmann Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17175013 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor
Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan
Abstract:
The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.
Keywords: Axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32185012 Effect of Nanofluids on the Saturated Pool Film Boiling
Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Kemal Comakli
Abstract:
In this study, the effect of nanofluids on the pool film boiling was experimentally investigated at saturated condition under atmospheric pressure. For this purpose, four different water-based nanofluids (Al2O3, SiO2, TiO2 and CuO) with 0.1% particle volume fraction were prepared. To investigate the boiling heat transfer, a cylindrical rod with high temperature was used. The rod heated up to high temperatures was immersed into nanofluids. The center temperature of rod during the cooling process was recorded by using a K-type thermocouple. The quenching curves showed that the pool boiling heat transfer was strongly dependent on the nanoparticle materials. During the repetitive quenching tests, the cooling time decreased and thus, the film boiling vanished. Consequently, the primary reason of this was the change of the surface characteristics due to the nanoparticles deposition on the rod-s surface.Keywords: Heat transfer, nanofluid, nanoparticles, pool film boiling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21575011 Effect of Different Configurations of Mechanical Aerators on Oxygen Transfer and Aeration Efficiency with respect to Power Consumption
Authors: S.B. Thakre, L.B. Bhuyar, S.J. Deshmukh
Abstract:
This paper examines the use of mechanical aerator for oxidation-ditch process. The rotor, which controls the aeration, is the main component of the aeration process. Therefore, the objective of this study is to find out the variations in overall oxygen transfer coefficient (KLa) and aeration efficiency (AE) for different configurations of aerator by varying the parameters viz. speed of aerator, depth of immersion, blade tip angles so as to yield higher values of KLa and AE. Six different configurations of aerator were developed and fabricated in the laboratory and were tested for abovementioned parameters. The curved blade rotor (CBR) emerged as a potential aerator with blade tip angle of 47°. The mathematical models are developed for predicting the behaviour of CBR w.r.t kLa and power. In laboratory studies, the optimum value of KLa and AE were observed to be 10.33 h-1 and 2.269 kg O2/ kWh.Keywords: Aerator, Aeration efficiency, Dissolve Oxygen, Overall oxygen transfer coefficient, Oxidation ditch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38925010 Endeavoring Innovation via Research and Development Management: A Case of Iranian Industrial Sector
Authors: Reihaneh Montazeri Shatouri, Rosmini Omar, Wan Khairuzzaman Wan Ismail
Abstract:
This study aims at investigating factors in research and development (R&D) growth and exploring the role of R&D management in enhancing social innovation and productivity improvement in Iran-s industrial sector. It basically explores the common types of R&D activities and the industries which benefited the most from active R&D units in Iran. The researchers generated qualitative analyses obtained from primary and secondary data. The primary data have been retrieved through interviews with five key players (Managing Director, Internal Manager, General Manager, Executive Manager, and Project Manager) in the industrial sector. The secondary data acquired from an investigation on Mazandaran, a province of northern Iran. The findings highlight Iran-s focuses of R & D on cost reduction and upgrading productivity. Industries that have benefited the most from active R&D units are metallic, machinery and equipment design, and automotive. We rank order the primary effects of R&D on productivity improvement as follows, industry improvement, economic growth, using professional human resources, generating productivity and creativity culture, creating a competitive and innovative environment, and increasing people-s knowledge. Generally, low budget dedication and insufficient supply of highly skilled scientists and engineers are two important obstacles for R&D in Iran. Whereas, R&D has resulted in improvement in Iranian society, transfer of contemporary knowledge into the international market is still lacking.Keywords: Productivity, R&D, Transfer of Knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16495009 A Linearization and Decomposition Based Approach to Minimize the Non-Productive Time in Transfer Lines
Authors: Hany Osman, M. F. Baki
Abstract:
We address the balancing problem of transfer lines in this paper to find the optimal line balancing that minimizes the nonproductive time. We focus on the tool change time and face orientation change time both of which influence the makespane. We consider machine capacity limitations and technological constraints associated with the manufacturing process of auto cylinder heads. The problem is represented by a mixed integer programming model that aims at distributing the design features to workstations and sequencing the machining processes at a minimum non-productive time. The proposed model is solved by an algorithm established using linearization schemes and Benders- decomposition approach. The experiments show the efficiency of the algorithm in reaching the exact solution of small and medium problem instances at reasonable time.Keywords: Transfer line balancing, Benders' decomposition, Linearization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731