Search results for: topic extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1094

Search results for: topic extraction

824 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
823 Managing Business Processes in the Age of Digital Transformation: A Literature Review

Authors: Ana-Marija Stjepić, Dalia Suša Vugec

Abstract:

Today, digital transformation is one of the leading topics that occupy the attention of scientific circles and business experts. Organizational success is most often reflected through the successful managing of business processes. Given the growing market for digital innovations and its ever-increasing impact on business, organizations need to be prepared for organizational changes that come with the digital era. In order to maintain their competitive advantage in the global market, organizations must adapt their processes to new digitalization conditions. The main goal of this study is to point out the link between the digital transformation and the business process management concept. Therefore, in order to contribute to the scientific field that explores the potential relation between business process management concept and digital transformation, a literature review has been conducted. Papers have been searched within the Business Process Management Journal by keywords related to the term digital transformation. Selected papers have been analyzed according to the topic, type of publication, year of publication, keywords, etc. The results reveal a growing number of papers published on the topic of digital transformation to the Business Process Management Journal, but the lack of case studies. This paper contributes to the extension of academic literature in this important, yet insufficiently researched, scientific field that creates the bond between two strong concepts of digital transformation and business process management.

Keywords: Business process management, digital transformation, digitalization, process change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
822 Study Habits and Level of Difficulty Encountered by Maltese Students Studying Biology Advanced Level Topics

Authors: Marthese Azzopardi, Liberato Camilleri

Abstract:

This research was performed to investigate the study habits and level of difficulty perceived by post-secondary students in Biology at Advanced-level topics after completing their first year of study. At the end of a two-year ‘sixth form’ course, Maltese students sit for the Matriculation and Secondary Education Certificate (MATSEC) Advanced-level biology exam as a requirement to pursue science-related studies at the University of Malta. The sample was composed of 23 students (16 taking Chemistry and seven taking some ‘Other’ subject at the Advanced Level). The cohort comprised seven males and 16 females. A questionnaire constructed by the authors, was answered anonymously during the last lecture at the end of the first year of study, in May 2016. The Chi square test revealed that gender plays no effect on the various study habits (c2 (6) = 5.873, p = 0.438). ‘Reading both notes and textbooks’ was the most common method adopted by males (71.4%), whereas ‘Writing notes on each topic’ was that mostly used by females (81.3%). The Mann-Whitney U test showed no significant difference in the study habits of students and the mean assessment mark obtained at the end of the first year course (p = 0.231). Statistical difference was found with the One-ANOVA test when comparing the mean assessment mark obtained at the end of the first year course when students are clustered by their Secondary Education Certificate (SEC) grade (p < 0.001). Those obtaining a SEC grade of 2 and 3 got the highest mean assessment of 68.33% and 66.9%, respectively [SEC grading is 1-7, where 1 is the highest]. The Friedman test was used to compare the mean difficulty rating scores provided for the difficulty of each topic. The mean difficulty rating score ranges from 1 to 4, where the larger the mean rating score, the higher the difficulty. When considering the whole group of students, nine topics out of 21 were perceived as significantly more difficult than the other topics. Protein synthesis, DNA Replication and Biomolecules were the most difficult, in that order. The Mann-Whitney U test revealed that the perceived level of difficulty in comprehending Biomolecules is significantly lower for students taking Chemistry compared to those not choosing the subject (p = 0.018). Protein Synthesis was claimed as the most difficult by Chemistry students and Biomolecules by those not studying Chemistry. DNA Replication was the second most difficult topic perceived by both groups. The Mann-Whitney U test was used to examine the effect of gender on the perceived level of difficulty in comprehending various topics. It was found that females have significantly more difficulty in comprehending Biomolecules than males (p=0.039). Protein synthesis was perceived as the most difficult topic by males (mean difficulty rating score = 3.14), while Biomolecules, DNA Replication and Protein synthesis were of equal difficulty for females (mean difficulty rating score = 3.00). Males and females perceived DNA Replication as equally difficult (mean difficulty rating score = 3.00). Discovering the students’ study habits and perceived level of difficulty of specific topics is vital for the lecturer to offer guidance that leads to higher academic achievement.

Keywords: Biology, Perceived difficulty, Post-secondary, Study habits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
821 Multimodal Biometric System Based on Near- Infra-Red Dorsal Hand Geometry and Fingerprints for Single and Whole Hands

Authors: Mohamed K. Shahin, Ahmed M. Badawi, Mohamed E. M. Rasmy

Abstract:

Prior research evidenced that unimodal biometric systems have several tradeoffs like noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks, and unacceptable error rates. In order for the biometric system to be more secure and to provide high performance accuracy, more than one form of biometrics are required. Hence, the need arise for multimodal biometrics using combinations of different biometric modalities. This paper introduces a multimodal biometric system (MMBS) based on fusion of whole dorsal hand geometry and fingerprints that acquires right and left (Rt/Lt) near-infra-red (NIR) dorsal hand geometry (HG) shape and (Rt/Lt) index and ring fingerprints (FP). Database of 100 volunteers were acquired using the designed prototype. The acquired images were found to have good quality for all features and patterns extraction to all modalities. HG features based on the hand shape anatomical landmarks were extracted. Robust and fast algorithms for FP minutia points feature extraction and matching were used. Feature vectors that belong to similar biometric traits were fused using feature fusion methodologies. Scores obtained from different biometric trait matchers were fused using the Min-Max transformation-based score fusion technique. Final normalized scores were merged using the sum of scores method to obtain a single decision about the personal identity based on multiple independent sources. High individuality of the fused traits and user acceptability of the designed system along with its experimental high performance biometric measures showed that this MMBS can be considered for med-high security levels biometric identification purposes.

Keywords: Unimodal, Multi-Modal, Biometric System, NIR Imaging, Dorsal Hand Geometry, Fingerprint, Whole Hands, Feature Extraction, Feature Fusion, Score Fusion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
820 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
819 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition

Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine

Abstract:

In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.

Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
818 Bioprocessing of Proximally Analyzed Wheat Straw for Enhanced Cellulase Production through Process Optimization with Trichodermaviride under SSF

Authors: Ishtiaq Ahmed, Muhammad Anjum Zia, Hafiz Muhammad Nasir Iqbal

Abstract:

The purpose of the present work was to study the production and process parameters optimization for the synthesis of cellulase from Trichoderma viride in solid state fermentation (SSF) using an agricultural wheat straw as substrates; as fungal conversion of lignocellulosic biomass for cellulase production is one among the major increasing demand for various biotechnological applications. An optimization of process parameters is a necessary step to get higher yield of product. Several kinetic parameters like pretreatment, extraction solvent, substrate concentration, initial moisture content, pH, incubation temperature and inoculum size were optimized for enhanced production of third most demanded industrially important cellulase. The maximum cellulase enzyme activity 398.10±2.43 μM/mL/min was achieved when proximally analyzed lignocellulosic substrate wheat straw inocubated at 2% HCl as pretreatment tool along with distilled water as extraction solvent, 3% substrate concentration 40% moisture content with optimum pH 5.5 at 45°C incubation temperature and 10% inoculum size.

Keywords: Cellulase, Lignocellulosic residue, Processoptimization, Proximal analysis, SSF, Trichoderma viride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
817 A New Approach to Face Recognition Using Dual Dimension Reduction

Authors: M. Almas Anjum, M. Younus Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.

Keywords: Biometrics, DCT, Face Recognition, Illumination, Computation, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
816 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation

Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino

Abstract:

This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.

Keywords: Corn stalk, natural geotextile, retting, soil erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
815 Real-Time Vision-based Korean Finger Spelling Recognition System

Authors: Anjin Park, Sungju Yun, Jungwhan Kim, Seungk Min, Keechul Jung

Abstract:

Finger spelling is an art of communicating by signs made with fingers, and has been introduced into sign language to serve as a bridge between the sign language and the verbal language. Previous approaches to finger spelling recognition are classified into two categories: glove-based and vision-based approaches. The glove-based approach is simpler and more accurate recognizing work of hand posture than vision-based, yet the interfaces require the user to wear a cumbersome and carry a load of cables that connected the device to a computer. In contrast, the vision-based approaches provide an attractive alternative to the cumbersome interface, and promise more natural and unobtrusive human-computer interaction. The vision-based approaches generally consist of two steps: hand extraction and recognition, and two steps are processed independently. This paper proposes real-time vision-based Korean finger spelling recognition system by integrating hand extraction into recognition. First, we tentatively detect a hand region using CAMShift algorithm. Then fill factor and aspect ratio estimated by width and height estimated by CAMShift are used to choose candidate from database, which can reduce the number of matching in recognition step. To recognize the finger spelling, we use DTW(dynamic time warping) based on modified chain codes, to be robust to scale and orientation variations. In this procedure, since accurate hand regions, without holes and noises, should be extracted to improve the precision, we use graph cuts algorithm that globally minimize the energy function elegantly expressed by Markov random fields (MRFs). In the experiments, the computational times are less than 130ms, and the times are not related to the number of templates of finger spellings in database, as candidate templates are selected in extraction step.

Keywords: CAMShift, DTW, Graph Cuts, MRF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
814 Robust Steam Temperature Regulation for Distillation of Essential Oil Extraction Process using Hybrid Fuzzy-PD plus PID Controller

Authors: Nurhani Kasuan, Zakariah Yusuf, Mohd Nasir Taib, Mohd Hezri Fazalul Rahiman, Nazurah Tajuddin, Mohd Azri Abdul Aziz

Abstract:

This paper presents a hybrid fuzzy-PD plus PID (HFPP) controller and its application to steam distillation process for essential oil extraction system. Steam temperature is one of the most significant parameters that can influence the composition of essential oil yield. Due to parameter variations and changes in operation conditions during distillation, a robust steam temperature controller becomes nontrivial to avoid the degradation of essential oil quality. Initially, the PRBS input is triggered to the system and output of steam temperature is modeled using ARX model structure. The parameter estimation and tuning method is adopted by simulation using HFPP controller scheme. The effectiveness and robustness of proposed controller technique is validated by real time implementation to the system. The performance of HFPP using 25 and 49 fuzzy rules is compared. The experimental result demonstrates the proposed HFPP using 49 fuzzy rules achieves a better, consistent and robust controller compared to PID when considering the test on tracking the set point and the effects due to disturbance.

Keywords: Fuzzy Logic controller, steam temperature, steam distillation, real time control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2848
813 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: Separation, activity coefficients, ionic liquid, methyltrioctylammonium chloride, capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
812 Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks

Authors: Sandipan Chakroborty, Anindya Roy, Goutam Saha

Abstract:

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter bank, it captures vocal tract characteristics more effectively in the lower frequency regions. This paper proposes a new set of features using a complementary filter bank structure which improves distinguishability of speaker specific cues present in the higher frequency zone. Unlike high level features that are difficult to extract, the proposed feature set involves little computational burden during the extraction process. When combined with MFCC via a parallel implementation of speaker models, the proposed feature set outperforms baseline MFCC significantly. This proposition is validated by experiments conducted on two different kinds of public databases namely YOHO (microphone speech) and POLYCOST (telephone speech) with Gaussian Mixture Models (GMM) as a Classifier for various model orders.

Keywords: Complementary Information, Filter Bank, GMM, IMFCC, MFCC, Speaker Identification, Speaker Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
811 Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (Zea mays) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant.

Keywords: Availability, crude oil contamination, EDTA, maize, metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
810 Real-time 3D Feature Extraction without Explicit 3D Object Reconstruction

Authors: Kwangjin Hong, Chulhan Lee, Keechul Jung, Kyoungsu Oh

Abstract:

For the communication between human and computer in an interactive computing environment, the gesture recognition is studied vigorously. Therefore, a lot of studies have proposed efficient methods about the recognition algorithm using 2D camera captured images. However, there is a limitation to these methods, such as the extracted features cannot fully represent the object in real world. Although many studies used 3D features instead of 2D features for more accurate gesture recognition, the problem, such as the processing time to generate 3D objects, is still unsolved in related researches. Therefore we propose a method to extract the 3D features combined with the 3D object reconstruction. This method uses the modified GPU-based visual hull generation algorithm which disables unnecessary processes, such as the texture calculation to generate three kinds of 3D projection maps as the 3D feature: a nearest boundary, a farthest boundary, and a thickness of the object projected on the base-plane. In the section of experimental results, we present results of proposed method on eight human postures: T shape, both hands up, right hand up, left hand up, hands front, stand, sit and bend, and compare the computational time of the proposed method with that of the previous methods.

Keywords: Fast 3D Feature Extraction, Gesture Recognition, Computer Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
809 Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique

Authors: Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa, Aini Hussain

Abstract:

Machine vision is an application of computer vision to automate conventional work in industry, manufacturing or any other field. Nowadays, people in agriculture industry have embarked into research on implementation of engineering technology in their farming activities. One of the precision farming activities that involve machine vision system is automatic weeding strategy. Automatic weeding strategy in oil palm plantation could minimize the volume of herbicides that is sprayed to the fields. This paper discusses an automatic weeding strategy in oil palm plantation using machine vision system for the detection and differential spraying of weeds. The implementation of vision system involved the used of image processing technique to analyze weed images in order to recognized and distinguished its types. Image filtering technique has been used to process the images as well as a feature extraction method to classify the type of weed images. As a result, the image processing technique contributes a promising result of classification to be implemented in machine vision system for automated weeding strategy.

Keywords: Machine vision, Automatic Weeding Strategy, filter, feature extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
808 Opinion Mining Framework in the Education Domain

Authors: A. M. H. Elyasir, K. S. M. Anbananthen

Abstract:

The internet is growing larger and becoming the most popular platform for the people to share their opinion in different interests. We choose the education domain specifically comparing some Malaysian universities against each other. This comparison produces benchmark based on different criteria shared by the online users in various online resources including Twitter, Facebook and web pages. The comparison is accomplished using opinion mining framework to extract, process the unstructured text and classify the result to positive, negative or neutral (polarity). Hence, we divide our framework to three main stages; opinion collection (extraction), unstructured text processing and polarity classification. The extraction stage includes web crawling, HTML parsing, Sentence segmentation for punctuation classification, Part of Speech (POS) tagging, the second stage processes the unstructured text with stemming and stop words removal and finally prepare the raw text for classification using Named Entity Recognition (NER). Last phase is to classify the polarity and present overall result for the comparison among the Malaysian universities. The final result is useful for those who are interested to study in Malaysia, in which our final output declares clear winners based on the public opinions all over the web.

Keywords: Entity Recognition, Education Domain, Opinion Mining, Unstructured Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
807 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract

Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie

Abstract:

In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.

Keywords: Biopolymer, microencapsulation, Spray-drying, Walnut green husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
806 Overcoming Boundaries in Science – A Plea against Political Isolations

Authors: Tim Engartner

Abstract:

If science is supposed to gain greater social relevance and acceptance, researchers must not only relate to the broader public, but also promote intercourse within the ivory tower itself. The latter process has been under way successfully for a number of years in the form of transdisciplinary research initiatives. What is still lacking is a broad debate about the necessity to look around properly and face up to opposing views on one and the same topic within our own discipline.

Keywords: Schools of thought, pluralism, openness, value judgements, controversy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131
805 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: Latent Dirichlet allocation, R program, text mining, topic model, user generated contents, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
804 A Systematic Map of the Research Trends in Wildfire Management in Mediterranean-Climate Regions

Authors: Renata Martins Pacheco, João Claro

Abstract:

Wildfires are becoming an increasing concern worldwide, causing substantial social, economic, and environmental disruptions. This situation is especially relevant in Mediterranean-climate regions, present in all the five continents of the world, in which fire is not only a natural component of the environment but also perhaps one of the most important evolutionary forces. The rise in wildfire occurrences and their associated impacts suggests the need for identifying knowledge gaps and enhancing the basis of scientific evidence on how managers and policymakers may act effectively to address them. Considering that the main goal of a systematic map is to collate and catalog a body of evidence to describe the state of knowledge for a specific topic, it is a suitable approach to be used for this purpose. In this context, the aim of this study is to systematically map the research trends in wildfire management practices in Mediterranean-climate regions. A total of 201 wildfire management studies were analyzed and systematically mapped in terms of their: Year of publication; Place of study; Scientific outlet; Research area (Web of Science) or Research field (Scopus); Wildfire phase; Central research topic; Main objective of the study; Research methods; and Main conclusions or contributions. The results indicate that there is an increasing number of studies being developed on the topic (most from the last 10 years), but more than half of them are conducted in few Mediterranean countries (60% of the analyzed studies were conducted in Spain, Portugal, Greece, Italy or France), and more than 50% are focused on pre-fire issues, such as prevention and fuel management. In contrast, only 12% of the studies focused on “Economic modeling” or “Human factors and issues,” which suggests that the triple bottom line of the sustainability argument (social, environmental, and economic) is not being fully addressed by fire management research. More than one-fourth of the studies had their objective related to testing new approaches in fire or forest management, suggesting that new knowledge is being produced on the field. Nevertheless, the results indicate that most studies (about 84%) employed quantitative research methods, and only 3% of the studies used research methods that tackled social issues or addressed expert and practitioner’s knowledge. Perhaps this lack of multidisciplinary studies is one of the factors hindering more progress from being made in terms of reducing wildfire occurrences and their impacts.

Keywords: Management Mediterranean-climate regions, policy, wildfire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678
803 Extraction of Fetal Heart Rate and Fetal Heart Rate Variability from Mother's ECG Signal

Authors: Khaldon Lweesy, Luay Fraiwan, Christoph Maier, Hartmut Dickhaus

Abstract:

This paper describes a new method for extracting the fetal heart rate (fHR) and the fetal heart rate variability (fHRV) signal non-invasively using abdominal maternal electrocardiogram (mECG) recordings. The extraction is based on the fundamental frequency (Fourier-s) theorem. The fundamental frequency of the mother-s electrocardiogram signal (fo-m) is calculated directly from the abdominal signal. The heart rate of the fetus is usually higher than that of the mother; as a result, the fundamental frequency of the fetal-s electrocardiogram signal (fo-f) is higher than that of the mother-s (fo-f > fo-m). Notch filters to suppress mother-s higher harmonics were designed; then a bandpass filter to target fo-f and reject fo-m is implemented. Although the bandpass filter will pass some other frequencies (harmonics), we have shown in this study that those harmonics are actually carried on fo-f, and thus have no impact on the evaluation of the beat-to-beat changes (RR intervals). The oscillations of the time-domain extracted signal represent the RR intervals. We have also shown in this study that zero-to-zero evaluation of the periods is more accurate than the peak-to-peak evaluation. This method is evaluated both on simulated signals and on different abdominal recordings obtained at different gestational ages.

Keywords: Aabdominal ECG, fetal heart rate variability, frequency harmonics, fundamental frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
802 The Balanced Hamiltonian Cycle on the Toroidal Mesh Graphs

Authors: Wen-Fang Peng, Justie Su-Tzu Juan

Abstract:

The balanced Hamiltonian cycle problemis a quiet new topic of graph theorem. Given a graph G = (V, E), whose edge set can be partitioned into k dimensions, for positive integer k and a Hamiltonian cycle C on G. The set of all i-dimensional edge of C, which is a subset by E(C), is denoted as Ei(C).

Keywords: Hamiltonian cycle, balanced, Cartesian product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
801 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: Bioeconomy, lipids, microalgae, proteins, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
800 Spectroscopic Determination of Functionalized Active Principles from Coleus aromaticus Benth Leaf Extract Using Ionic Liquids

Authors: Zharama M. Llarena

Abstract:

Green chemistry for plant extraction of active principles is the main interest of many researchers concerned with climate change. While classical organic solvents are detrimental to our environment, greener alternatives to ionic liquids are very promising for sustainable organic chemistry. This study focused on the determination of functional groups observed in the main constituents from the ionic liquid extracts of Coleus aromaticus Benth leaves using FT-IR Spectroscopy. Moreover, this research aimed to determine the best ionic liquid that can separate functionalized plant constituents from the leaves Coleus aromaticus Benth using Fourier Transform Infrared Spectroscopy. Coleus aromaticus Benth leaf extract in different ionic liquids, elucidated pharmacologically important functional groups present in major constituents of the plant, namely, rosmarinic acid, caffeic acid and chlorogenic acid. In connection to distinctive appearance of functional groups in the spectrum and highest % transmittance, potassium chloride-glycerol is the best ionic liquid for green extraction.

Keywords: Coleus aromaticus, ionic liquid, rosmarinic acid, caffeic acid, chlorogenic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
799 Personalizing Human Physical Life Routines Recognition over Cloud-Based Sensor Data Via Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS (Micro-Electro-Mechanical Systems) sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study presents state-of-the-art techniques for recognizing static and dynamic patterns and forecasting those challenging activities from multi-fused sensors. Furthermore, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, raw data were processed with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: Artificial intelligence, machine learning, gait analysis, local binary pattern, statistical features, micro-electro-mechanical systems, maximum relevance and minimum redundancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29
798 Topographic Arrangement of 3D Design Components on 2D Maps by Unsupervised Feature Extraction

Authors: Stefan Menzel

Abstract:

As a result of the daily workflow in the design development departments of companies, databases containing huge numbers of 3D geometric models are generated. According to the given problem engineers create CAD drawings based on their design ideas and evaluate the performance of the resulting design, e.g. by computational simulations. Usually, new geometries are built either by utilizing and modifying sets of existing components or by adding single newly designed parts to a more complex design. The present paper addresses the two facets of acquiring components from large design databases automatically and providing a reasonable overview of the parts to the engineer. A unified framework based on the topographic non-negative matrix factorization (TNMF) is proposed which solves both aspects simultaneously. First, on a given database meaningful components are extracted into a parts-based representation in an unsupervised manner. Second, the extracted components are organized and visualized on square-lattice 2D maps. It is shown on the example of turbine-like geometries that these maps efficiently provide a wellstructured overview on the database content and, at the same time, define a measure for spatial similarity allowing an easy access and reuse of components in the process of design development.

Keywords: Design decomposition, topographic non-negative matrix factorization, parts-based representation, self-organization, unsupervised feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
797 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
796 Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification

Authors: Ramaswamy Palaniappan, Nai-Jen Huan

Abstract:

Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariateautoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6th order were used to extract features from these EEG signals: AR coefficients computed with Burg-s algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.

Keywords: Autoregressive, Brain-Computer Interface, Electroencephalogram, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
795 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features

Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk

Abstract:

The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.

Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877