The Balanced Hamiltonian Cycle on the Toroidal Mesh Graphs

Wen-Fang Peng, Justie Su-Tzu Juan

Abstract—The balanced Hamiltonian cycle problem is a quiet new topic of graph theorem. Given a graph G = (V, E), whose edge set can be partitioned into k dimensions, for positive integer k and a Hamiltonian cycle C on G. The set of all *i*-dimensional edge of C, which is a subset by E(C), is denoted as $E_i(C)$. If $||E_i(C)| - |E_j(C)|| \le 1$ for $1 \le i < j \le k$, C is called a balanced Hamiltonian cycle. In this paper, the proposed result shows that there exists a balanced Hamiltonian cycle for any Toroidal Mesh graph $T_{m,n}$ if and only if $m, n \ge 3$ and Toroidal Mesh graph $nm \ne 2 \pmod{4}$, and how to find a balanced Hamiltonian cycle on $T_{m,n}$, for $n, m \ge 3$ and $mn \ne 2 \pmod{4}$.

Keywords-Hamiltonian cycle; balanced; Cartesian product

I. INTRODUCTION

THE research of optimal encode uses gray-code encode to signify the information of n-bit about the application of 3D scanning, which has been mentioned in the references [1], [2], [3], [5] and [8]. The utility of gray-code will decrease the consumption of resource and increase the precision. Nevertheless, there would be some problem when deal with those information of transforming between 1 and 0, such as it will spend much more cost in identification. How to decrease the cost in dealing with such problems is important. Hence, in this paper, it discusses a method to decrease the number of transformation between 0 and 1 in the some dimension.

Balanced Hamiltonian cycle (BHC) problems are widely discussed in recent years. Several issues about BHC have been proposed by other researchers [2]. Wang et al proposed the BHC on $C_n \times C_n$ for any positive integer $n \ge 3$. This paper proposes an extended research about the BHC on $C_m \times C_n$, also called $T_{m,n}$, for any positive integer $m \ge 3$, $n \ge 3$.

Next section introduces some background knowledge about the Hamiltonian cycle (HC) problem, Cartesian product, and some related definitions. Section 3 describes the main results, the research about the BHC problem on $T_{m, n}$, for $m, n \ge 3$, proposed by this paper. Finally, the last section makes a conclusion and lists the future work.

II. DEFINITION AND NOTATION

This paper denotes the symbols below by referring to [4], [6], [7] and [9]. Define a walk W, which is in a graph G = (V, E), is a sequence $w = x_1e_1x_2e_2...x_ke_ky$ for $x_1, x_2, ..., x_k, y \in V(G)$ and e_1 , $e_2, ..., e_k \in E(G)$. And let x be the *origin vertex* of W, y be the *terminus vertex* of W. If all of vertices in this walk are different, a walk W is denoted a *path*. When the origin vertex and the terminus vertex are the same vertex, then this path is denoted a *cycle*.

Su-Tzu Juan is with Department of Computer Science and Information Engineering National Chi Nan University Puli, Taiwan *Correspoding. e-mail: jsjuan@ncnu.edu.tw A Hamiltonian path of graph G = (V, E) is a path that contains all vertices. A Hamiltonian cycle of G is a cycle that contains all vertices.

Given a Hamiltonian cycle *C* on a graph G = (V, E), whose edge set can be partition into *k* dimensions, for positive integer *k*. And let $E_i(C)$ represents the set of all *i*-dimensional edge of *C* which is a subset by E(C). If $||E_i(C)| - |E_j(C)|| \le 1$ for $1 \le i \le j \le k$, *C* is called a balanced Hamiltonian cycle.

Let C_n denote a cycle with *n* vertices, given two graph G_1, G_2 , the Cartesian product $G_1 \times G_2$ of G_1 and G_2 is a graph with vertex set $V(G_1 \times G_2) = \{(x, y) \mid x \in V(G_1), y \in V(G_2)\}$ and the edge set $\{(u, v), (u', v') \mid u = u' \in V(G_1) \text{ and } (v, v') \in E(G_2) \text{ or } v$ $= v' \in V(G_2)$ and $(u, u') \in E(G_1)\}$. The *toroidal mesh graph*, $T_{m, n}$ is the graph $C_m \times C_n$.

The dimension of $T_{m,n}$ is 2. Given an Hamiltonian cycle C of $T_{m,n}$, let $E_1(C) = \{(x_i, y_j)(x_{i+1}, y_j) \mid 1 \le i \le m, 1 \le j \le n\}$ and $E_2(C) = \{(x_i, y_j)(x_i, y_{j+1}) \mid 1 \le i \le m, 1 \le j \le n\}$ mean the *1*-dimension edge set and 2-dimension edge set of a Hamiltonian cycle C, respectively. Thus, the relation between vertex number and edge number of Hamiltonian cycle C is $|V(C)| = |V(C_n \times C_m)| = |E_1(C)| + |E_2(C)| = mn$. If C satisfied that $||E_1(C)| - |E_2(C)|| \le 1$, it presents that C is balanced.

In this paper, when we draw a figure of $T_{m,n}$, *m* is denoted the number of vertices on *x*-axis, and *n* is the number of vertices on *y*-axis, respectively. Besides, for any vertices (x, y) of $T_{m,n}$, *x* is called the 1st-dimension and *y* is called the 2nd-dimension. Furthermore, we define the lower-left vertex of $T_{m,n}$ to be the *origin vertex* and set it as (1, 1). Fig. 1 shows an example of $T_{3, 4}$.

Fig. 1 T_{3, 4}

The next section discusses the methods for getting the balanced Hamiltonian cycle on $T_{m,n}$ for $n, m \ge 3$.

III. MAIN RESULTS

This section gives theorem1 for prove \nexists , and gives some cases to prove Theorem 3 that there exists a BHC on $T_{m,n}$ for positive integers $n, m \ge 3$, except for the situation on $mn \mod 4 = 2$.

Theorem 1: For mn mod 4 = 2, there is no any balanced Hamiltonian cycle C exists on $T_{m,n}$.

Proof.

When $mn \mod 4 = 2$, one of the following case will hold. (i) n

mod 4 = 2 and *m* is odd; (ii) *m* mod 4 = 2 and *n* is odd. Without loss of generality, we say *n* mod 4 = 2 and *m* is odd. Furthermore, let $n = 4k_1 + 2$ and $m = 2k_2 + 1$ for some positive k_1 and k_2 . Assume that there exists a balanced Hamiltonian cycle C^* on $T_{m,n}$. Since $V|(C^*)| = mn = (4k_1 + 2)(2k_2 + 1) = 8k_1k_2 + 4k_2$ $+ 4k_1 + 2 = 2(4k_1k_2 + 2k_1 + 2k_2 + 1), |E_1(C^*)| = |E_2(C^*)| = mn / 2$ $= 2(2k_1k_2 + k_1 + k_2) + 1$ is an odd integer.

We call a vertex u in $V(C^*)$ is black if $u \in \{(x, y) \mid 1 \le x \le m, 1 \le y \le n \text{ and } y \text{ is odd}\}$; white if $u \in \{(x, y) \mid 1 \le x \le m, 1 \le y \le n \text{ and } y \text{ is even}\}$. Hence the origin vertex is black. According to the definition of $E_2(C^*)$, $E_2(C^*)$ should trace black point to white point or white point to black point. After tracing all edges of C^* , find the terminate vertex of C^* is white due to $|E_2(C^*)|$ is odd. Obviously, the origin vertex and the terminate vertex of C^* are different. That is a contradiction. So, there is no BHC on $T_{m, n}$ when $mn \mod 4 = 2$.

Lemma 2: For n = 3, $m \ge 3$ and m is odd, there is a balanced Hamiltonian cycle on $T_{m, n}$.

Proof.

The proof is divided into two cases. Case 1 discusses the condition on $m \mod 4 = 1$ and n = 3; Case 2 discusses the state on $m \mod 4 = 3$ and n = 3.

Case 1. $m \mod 4 = 1$ and n = 3

In this section, $T_{m,3}$ consists of the BHC on $T_{4,3}$ and the BHC on $T_{5,3}$, as shown in Fig. 2 and Fig. 3, respectively. Besides, Fig. 4 indicates how to connect all figures. First of all, let x = (m-5)/4, and inset Fig. 2 for x times on right side of Fig. 3 when m >5 and n = 3. Then, delete edge set $E_1 = \{(6 + 4i, 3)(9 + 4i, 3) \mid 0 \le i \le (m-9) \mid 4\} \cup (1, 3)(5, 3)$, and add edge set $E_2 = \{(5 + 4i, 3)(6 + 4i, 3) \mid 0 \le i \le (m-9) \mid 4\} \cup (1, 3)(m, 3)$. After these steps, a Hamiltonian cycle C on $T_{m,3}$ is generated, whose $|E_1(C)| = 7 + 6x$ and $|E_2(C)| = 8 + 6x$. Consequently, $||E_1(C)| - |E_2(C)|| = 1$, C satisfies the definition of BHC.

Case 2. m mod 4 = 3 and n = 3

Compare Fig. 4 with Fig. 6, which indicates how to construct the BHC on $T_{m,3}$, there is only one difference at the beginning. As a result, refer to Case 3.1, replace Fig. 3 with Fig. 5, which is one of possible BHCs on $T_{3,3}$, and revise x = (m - 3) / 4. Then correct the edge set $E_3 = \{(4 + 4i, 3)(7 + 4i, 3) | 1 \le i \le (m - 7) / 4\} \cup (1, 1)(3, 3)$ and $E_4 = \{(3 + 4i, 3)(4 + 4i, 3) | 0 \le i \le (m - 7) / 4\} \cup (1, 3)(m, 3)$, respectively. In the end, a Hamiltonian cycle *C* on $T_{m,3}$ is built, which $|E_1(C)| = 5 + 6x$ and $|E_2(C)| = 4 + 6x$. Obviously, *C* satisfies the definition of BHC as a result of $||E_1(C)| - |E_2(C)|| = 1$.

Fig. 5 The BHC on $T_{3,3}$

Fig. 6 The BHC $T_{m, 3}$

Theorem 3: For n, m \geq 3, *there is a balanced Hamiltonian cycle on T_{m, m} except for the state on mn mod 4 = 2.*

Proof.

According to the condition of even or odd on n, m, the proof is divided into three cases. Case 1 proposes the condition on n, m both are even; Case 2 proposes the condition one of m, n is even and the other is odd; Case 3 discusses the condition on n, m both are odd.

INDEE I						
THE RESULT OF THIS THEOREM						
	m mod	m mod	m mod	m mod	m mod	m mod
	4 = 0	4 = 2	8 = 1	8 = 5	8 = 3	8 = 7
$n \mod 4 =$	Case 1.1		Case 2.1			
0						
$n \mod 4 =$	Case	Case	Case 2.2			
2	1.2	1.3				
$n \mod 4 =$	Case	Case	Case	Case	Case	Case
1	2.1	2.2	3.1	3.3	3.2	3.4
$n \mod 4 =$			Case	Case	Case	Case
3, n ≥ 7			3.5	3.7	3.6	3.8
<i>n</i> = 3			Lemma 2 Lemm		ma 2	
			Case 1		Case 2	

Case 1. n, m both are even

This case is separated into three subcases for discussion. Case 1.1, Case 1.2 and Case 1.3 consider the states on *m* is even and $n \mod 4 = 0$, $m \mod 4 = 0$ and $n \mod 4 = 2$, $m \mod 4 = 2$ and $n \mod 4 = 2$, respectively.

Case 1.1. m is even and $n \mod 4 = 0$

Fig. 7 and Fig. 8 show one of the possible HCs on $T_{2,4}$ and one of the possible BHCs on $T_{4,4}$, respectively. When m > 4 and

Fig. 4 The BHC on $T_{m, 3}$

n = 4, let x = (m - 4) / 2, and then duplicate Fig. 7 for x times. Next, inset them on the right side of Fig. 8 mentioned above. Then delete edge set $E_5 = \{(i, 2)(i, 3) | 4 \le i \le m - 1\}$, and insert edge set $E_6 = \{(i, 2)(i + 1, 2) \cup (i, 3)(i + 1, 3) | 4 \le i \le m - 2 \text{ and } i \text{ is even.}\}$.

Fig. 8 The BHC on $T_{4,4}$

After these steps, a Hamiltonian cycle *C* could be derived as shown in Fig. 9, whose $|E_1(C)| = 8 + (2 + 2)x = 8 + 4x$, and $|E_2(C)| = 7 + 4x + 1 = 8 + 4x$. Due to $||E_1(C)| - |E_2(C)|| = 0$, *C* is a BHC of $T_{m, 4}$.

When n > 4, Fig. 10 illustrates the way of constructing a BHC on $T_{m, n}$. Let y = (n - 4) / 4, stack y + 1 *Cs* on the top of each other. Next, delete edge set $E_7 = \{(1, 1 + 4i)(1, 4 + 4i) | 0 \le i \le y\}$, and add edge set $E_8 = \{(1, 4i)(1, 4i + 1) | 1 \le i \le y\} \cup (1, 1)(1, n)$. A BHC on $T_{m, n}$ for *m* is even and *n* mod 4 = 0 is generated.

Case 1.2 $m \mod 4 = 0$ and $n \mod 4 = 2$

Fig. 11 and Fig. 12 are isomorphic BHC on $T_{4, 6}$. The following steps indirect how to find a BHC on $T_{m, 6}$ when m > 4. First, inset Fig. 12 on the right side of Fig. 11 for x times, where x = (m-4)/4. Second, delete edge set $E_9 = \{(1 + 4i, 6)(4 + 4i, 6) | 0 \le i \le x\}$. Third, add edge set $E_{10} = \{(4 + 4i, 6)(5 + 4i, 6) | 0 \le i \le (n - 8)/4\}$. By implementing these steps above, a Hamiltonian cycle *C* is produced, whose $|E_1(C)| = 12 + 12x$ and $|E_2(C)| = 12 + 12x$, as shown in Fig. 13. Because of $||E_1(C)| - |E_2(C)|| = 0$, *C* satisfies the definition of BHC.

Fig. 13 The BHC on $T_{m, 6}$

When n > 6, let y = (n - 6) / 4. Stack Fig. 9 for *y* times on top of Fig. 13. Subsequently, delete edge set $E_{11} = \{(1, 7 + 4i)(1, 10 + 4i) | 0 \le i \le (n - 10) / 4\} \cup (1, 1)(1, 6)$, and put edge set $E_{12} = \{(1, 6 + 4i)(1, 7 + 4i) | 0 \le i \le (n - 10) / 4\} \cup (1, 1)(1, n)$. As a result, a BHC on $T_{m, n}$ can be built, which connect the BHC on $T_{m, 6}$, shown as Fig. 13, and the *y* BHCs on $T_{m, 4}$, shown as Fig. 9.

Case 1.3. $m \mod 4 = 2$ and $n \mod 4 = 2$

Fig. 14 shows a BHC on $T_{6, 6}$ which can be used to build a BHC on $T_{m, 6}$. Consider m > 6, make x = (m - 6) / 4. Use Fig. 14 as the beginning, and inset Fig. 12 on the right side for x times. After that, remove edge set $E_{13} = \{(7 + 4i, 6)(10 + 4i, 6) | 0 \le i \le (m - 10) / 4\} \cup (1, 6)(6, 6)$, and add edge set $E_{14} = \{(6 + 4i, 6)(7 + 4i, 6) | 0 \le i \le (m - 10) / 4\} \cup (1, 6)(m, 6)$. Finally, a Hamiltonian cycle C on $T_{m, 6}$ is built as shown in Fig. 15, whose $|E_1(C)| = 18 + 12x$ and $|E_2(C)| = 18 + 12x$. Obviously, C satisfies the definition of BHC owing to $||E_1(C)| - |E_2(C)|| = 0$.

When n > 6, the way of constructing the BHC on $T_{m, n}$ is similar to Case 1.2. Only difference is to replace Fig. 13 with Fig. 15, else parts are the same.

Fig. 14 The BHC on $T_{6,6}$

Fig. 15 The BHC on $T_{m, 6}$

Case 2. One of m, n is even, and the other is odd

For any positive integer n, m, $T_{m,n}$ and $T_{n,m}$ are isomorphic. Hence, if one of m, n is even, and the other is odd, without lost of generality, set that n is even and m is odd.

This case can be also divided into two subcases for discussion. Case 2.1 discusses the condition on *m* is odd and *n* mod 4 = 0; Case 2.2 discusses the state on *m* is odd and *n* mod 4 = 2.

Case 2.1. m is odd and $n \mod 4 = 0$

Fig. 16 shows a possible BHC on $T_{3, 4}$. When m > 3, the BHC on $T_{m, 4}$ consists of Fig. 7 and Fig. 16. Fig. 17 illustrates the way of connecting. First, for x = (m - 3) / 4, inset x duplicate BHC, which has been shown in Fig. 7, on the right side of Fig. 16. Second, eliminate edge set $E_{15} = \{(3, 3) (i, 3)(i, 4) | 4 \le i \le m\} \cup (1, 4)(3, 4) \cup (1, 3)$. Third, put edge set $E_{16} = \{(3 + 2i, 3)(4 + 2i, 3) \cup (3 + 2i, 4)(4 + 2i, 4) | 0 \le i \le (m - 4) / 2\} \cup (1, 3)(m, 3) \cup (1, 4)(m, 4)$ on the graph produced by previous steps. After that, a Hamiltonian cycle C is established, whose $|E_1(C)| = 6 + (2 + 2)x = 6 + 4x$ and $|E_2(C)| = 6 + 4x$. Due to $||E_1(C)| - |E_2(C)|| = 0$, C satisfies the definition of BHC.

When n > 4, for y = (n - 4) / 4, stack y + 1 *Cs.* Next, remove edge set $E_{17} = \{(1, 1 + 4i)(1, 4 + 4i) | 0 \le i \le y\}$, and add edge set $E_{18} = \{(1, 4i)(1, 4i + 1) | 1 \le i \le y\} \cup (1, 1)(1, n)$. Therefore, a BHC on $T_{m,n}$ is built, as shown in Fig. 18.

Case 2.2: $n \mod 4 = 2$ and m is odd

According to theorem 1, there is no balanced Hamiltonian cycle on $T_{m,n}$ for *m* mod is odd and *n* mod 4 = 2.

Case 3. m, n both are odd

This case is also separated into eight subcases for discussion. Case 3.1 discusses the state on $n \mod 4 = 1$ and $m \mod 8 = 1$; Case 3.2 proposes the state on $n \mod 4 = 3$ and $m \mod 8 = 3$; Case 3.3 consults the operations when $n \mod 4 = 1$ and $m \mod 8$ = 5; Case 3.4 concerns the details when $n \mod 4 = 1$ and $m \mod 8 = 7$.

The other four remaining cases propose the method under the condition of n > 3. Case 3.5 discusses the state on $n \mod 4 = 3$ and $m \mod 8 = 1$; Case 3.6 considers the state on $n \mod 4 = 3$ and $m \mod 8 = 3$; Case 3.7 concerns the operations when $n \mod 4 = 3$ and $m \mod 8 = 5$; Case 3.8 consults the details when $n \mod 4 = 3$ and $m \mod 8 = 7$.

Case 3.1. $m \mod 8 = 1$ and $n \mod 4 = 1$

Fig. 19 and Fig. 20 show one of the possible HCs on $T_{8,5}$ and one of possible BHCs on $T_{9,5}$, respectively. When m > 9 and n = 5, make x = (m - 9) / 8. First, use Fig. 20 as the beginning, and inset Fig. 19 for *x* times on its right side. Then eliminate edge set $E_{19} = \{(10 + 8i, 4)(10 + 8i, 5) \cup (17 + 8i, 4)(17 + 8i, 5) | 0 \le i \le (m - 17) / 8\} \cup (1, 4)(9, 4) \cup (1, 5)(9, 5)$, and add edge set $E_{20} = \{(9 + 8i, 4)(10 + 8i, 4) \cup (9 + 8i, 5)(10 + 8i, 5) | 0 \le i \le (m - 17) / 8\} \cup (1, 4)(m, 4) \cup (1, 5)(1, m)$. Finally, a Hamiltonian cycle *C* on $T_{m,5}$ is produced, which is shown in Fig. 21. For $|E_1(C)| = 22 + (18 + 2)x = 22 + 20x$ and $|E_2(C)| = 23 + 20x$, *C* satisfies that $||E_1(C)| - |E_2(C)|| = 1$. Undoubtedly, *C* is a BHC of $T_{m,5}$.

When n > 5, let y = (n - 5) / 4. Use Fig. 21 as base, then stack y BHCs, which is shown in Fig.12. Next, remove edge set $E_{21} = \{(1, 6 + 4i)(1, 9 + 4i) | 0 \le i \le (n - 9) / 4\} \cup (1, 1)(1, 5), \text{ and insert edge set } E_{22} = \{(1, 1)(1, n) | 0 \le i \le (n - 9) / 4\} \cup (1, 5 + 4i)(1, 6 + 4i)$. After complete all of the steps, a BHC on $T_{m,n}$ for $m \mod 8 = 1$ and $n \mod 4 = 1$ is established.

Case 3.2. $m \mod 8 = 3$ and $n \mod 4 = 1$

Fig. 23 represents the way of constructing a BHC on $T_{m, 5}$. When m > 3, let x = (m - 3) / 8, and then duplicate Fig. 19 for x times. Next, inset them on the right side of the BHC on $T_{3, 5}$, which is shown in Fig. 22. In order to connect every figure, delete edge set $E_{23} = \{(4 + 8i, 4)(4 + 8i, 5) \cup (11 + 8i, 4)(11 + 8i, 5) | 0 \le i \le (m - 11) / 8\} \cup (1, 4)(3, 4) \cup (1, 5)(3, 5)$, and add edge set $E_{24} = \{(3 + 8i, 4)(4 + 8i, 4) \cup (3 + 8i, 5)(4 + 8i, 5) | 0 \le i \le (m - 11) / 8\} \cup (1, 4)(m, 4) \cup (1, 5)(m, 5)$. By implementing the steps above, a Hamiltonian cycle *C* is generated, whose $|E_1(C)| = 8 + (18 + 2)x = 8 + 20x$ and $|E_2(C)| = 7 + 20x$. Due to $||E_1(C)| - |E_2(C)|| = 1$, *C* satisfies the definition of BHC.

When n > 5, the way of constructing the BHC on $T_{m, n}$ is similar to Case 3.1. Only one difference is to replace Fig. 21 with Fig. 23.

Case 3.3. $m \mod 8 = 5$ and $n \mod 4 = 1$

Fig. 24 represents a BHC on $T_{5,5}$, which is used to construct the BHC on $T_{m,5}$. When m > 5, let x = (m-5) / 8. To begin with, inset Fig. 19 for *x* times on the right side of Fig. 24. Next, delete edge set $E_{25} = \{(6 + 8i, 4)(6 + 8i, 5) \cup (13 + 8i, 4)(13 + 8i, 5) | 0 \le i \le (m - 13) / 8\} \cup (1, 4)(5, 4) \cup (1, 5)(5, 5)$, and put edge set $E_{26} = \{(5 + 8i, 4)(6 + 8i, 4) \cup (5 + 8i, 5)(6 + 8i, 5) | 0 \le i \le (m - 13) / 8\} \cup (1, 4)(m, 4) \cup (1, 5)(m, 5)$. Thus, a Hamiltonian cycle *C* is established, which is shown in Fig. 24. For $|E_1(C)| = 12 + (18 + 2)x = 12 + 20x$ and $|E_2(C)| = 13 + 20x$, *C* obviously satisfies $||E_1(C)| - |E_2(C)|| = 1$ that make it be a BHC of $T_{m,5}$ for *m* mod 8 = 5 and *n* mod 4 = 1.

Fig. 24 The BHC on $T_{m, 5}$

Case 3.1 and Case 3.3 operate alike during n > 5. Only difference is to replace Fig. 21 with Fig. 24.

Case 3.4. $m \mod 8 = 7$ and $n \mod 4 = 1$

The following steps indirect how to construct a BHC on $T_{m,5}$. A BHC on $T_{7,5}$ is shown in Fig. 25. When m > 7, make x = (m - 7) / 8. Then use Fig. 25 as the beginning, and inset Fig. 19 for x times on the right side. In order to connect all figures, eliminate edge set $E_{27} = \{(8 + 8i, 4)(8 + 8i, 5) \cup (15 + 8i, 4)(15 + 8i, 5) | 0 \le i \le (m - 15) / 8\} \cup (1, 4)(7, 4) \cup (1, 5)(7, 5)$, and insert edge set $E_{28} = \{(7 + 8i, 4)(8 + 8i, 4) \cup (7 + 8i, 5)(8 + 8i, 5) | 0 \le i \le (m - 15) / 8\} \cup (1, 4)(m, 4) \cup (1, 5)(m, 5)$. Therefore, a Hamiltonian cycle *C* is built, which as shown in Fig. 26. For $|E_1(C)| = 18 + (18 + 2)x = 18 + 20x$ and $|E_2(C)| = 17 + 20x$, *C* satisfies $||E_1(C)| - |E_2(C)|| = 1$. Without a doubt, *C* is a BHC of $T_{m,5}$ for *m* mod 8 = 7 and *n* mod 4 = 1.

Refer to Case 3.1 when n > 5. Replace Fig. 21 with Fig. 26, else parts are similar to Case 3.1. Finally, a BHC on $T_{m, n}$ is produced.

Fig. 27 The BHC on $T_{m,5}$

Case 3.5. $m \mod 8 = 1$ and $n \mod 4 = 3$

Fig. 27 and Fig. 28 show one of the possible HCs on $T_{8,7}$ and one of possible BHCs on $T_{9,7}$, respectively. Furthermore, Fig. 29 illustrates the way of constructing a BHC on $T_{m,7}$, which is described in the content below. When m > 9, let x = (m - 9) / 8. First, inset x HCs, which has been mentioned above, on the right side of Fig. 28. Second, remove edge set $E_{29} = \{(10 + 8i,$ $6)(10 + 8i, 7) \cup (17 + 8i, 6)(17 + 8i, 7) | 0 \le i \le (m - 17) / 8 \} \cup$ $(1, 6)(9, 6) \cup (1, 7)(9, 7)$. Third, add edge set $E_{30} = \{(9 + 8i, 1), (2 - 8i), (2 - 8i),$ $6)(10+8i, 6) \cup (9+8i, 7)(10+8i, 7) | 0 \le i \le (m-17) / 8 \} \cup (1,$ $(6)(m, 6) \cup (1, 7)(m, 7)$. Finally, a Hamiltonian cycle C is yielded, whose $|E_1(C)| = 32 + (26 + 2)x = 32 + 28x$ and $|E_2(C)| = 31 + 28x$. As a result of $||E_1(C)| - |E_2(C)|| = 1$, it verify that C is a BHC.

Fig. 29 The BHC on $T_{m,7}$

When n > 7, let y = (n - 7) / 4. Stack y BHCs, which is shown in Fig. 12, above Fig. 28. Then delete edge set $E_{31} = \{(1, 8 + 4i)(1, 1, 2)\}$ $11 + 4i | 0 \le i \le (n - 11) / 4 \} \cup (1, 1)(1, 7)$, and add edge set E_{32} = { $(1, 7 + 4i)(1, 8 + 4i) | 0 \le i \le (n - 11) / 4$ } $\cup (1, 1)(1, n)$. After that, a BHC on $T_{m, n}$ is generated. *Case 3.6.* $m \mod 8 = 3$ and $n \mod 4 = 3$

Fig. 30 represents a BHC on $T_{3,7}$, which is used to construct a BHC on $T_{m,7}$. Besides, Fig. 31 illustrates how to connect Fig. 27 and Fig. 30. Let x = (m-3)/8 for m > 3. Then, copy Fig. 27 for x times, and inset them on the right side of Fig. 30. Next, eliminate edge set $E_{33} = \{(4 + 8i, 6)(4 + 8i, 7) \cup (11 + 8i, 6)(11 + 8i,$ + 8*i*, 7) | $0 \le i \le (m - 11) / 8$ } \cup (1, 6)(3, 6) \cup (1, 7)(3, 7), and put edge set $E_{34} = \{(3 + 8i, 6)(4 + 8i, 6) \cup (3 + 8i, 7)(4 + 8i, 7) \mid$ $0 \le i \le (m - 11) / 8$ $\cup (1, 6)(m, 6) \cup (1, 7)(m, 7)$. Therefore, a Hamiltonian cycle *C* is established, whose $|E_1(C)| = 10 + (26 + 1)$ 2x = 10 + 28x and $|E_2(C)| = 11 + 28x$. Because of $||E_1(C)| - 28x$ $|E_2(C)|| = 1$, C satisfies the definition of BHC.

Refer to Case 3.5 when n > 7. Fig. 31 substitutes for Fig. 29, and the else parts are same as Case 3.5. Eventually, a BHC on $T_{m,n}$ is built.

Case 3.7. m mod 8 = 5 *and n mod* 4 = 3

In this section, $T_{m,7}$ consists of the HC on $T_{8,7}$, as shown in Fig. 27, and the BHC on $T_{5,7}$, as shown in Fig. 32. When m > 5, make x = (m - 5) / 8. First of all, inset Fig. 27 for x times on the right side of Fig. 32. So as to connect all figures, delete edge set $E_{35} = \{(6+8i, 6)(6+8i, 7) \cup (13+8i, 6)(13+8i, 7) \mid 0 \le i \le 1\}$ (m-13)/8 \cup (1, 6)(5, 6) \cup (1, 7)(5, 7), and add edge set E_{36} = $\{(5+8i, 6)(6+8i, 6) \cup (5+8i, 7)(6+8i, 7) \mid 0 \le i \le (m-13) / (5+8i, 7) \mid 0 \le i \le (m-13) \}$ 8} \cup (1, 6)(*m*, 6) \cup (1, 7)(*m*, 7). As a result, a Hamiltonian cycle C on $T_{m,7}$ is yielded, whose $|E_1(C)| = 18 + (26 + 2)x = 18 +$ 28x and $|E_2(C)| = 17 + 28x$, as shown in Fig. 33. Without a doubt, *C* is a BHC due to $||E_1(C)| - |E_2(C)|| = 1$.

Fig. 33 The BHC on $T_{m,7}$

When n > 7, the way of constructing the BHC on $T_{m,n}$ is similar to Case 3.5. Only one difference is to replace Fig. 29 with Fig. 33.

Case 3.10. $m \mod 8 = 7$ and $n \mod 4 = 3$

There is a BHC on $T_{7,7}$ as shown in Fig. 34. When m > 7, use the BHC on $T_{7,7}$ mentioned above as the beginning. Make x = (m-7) / 8, then inset x HCs, which is shown in Fig. 27, on the right side of Fig. 34. Then, remove edge set $E_{37} = \{(15 + 8i, 6)(15 + 8i, 7) | 0 \le i \le (m-15) / 8\} \cup (1, 6)(7, 6) \cup (1, 7)(7, 7) \cup (8 + 8i, 6)(8 + 8i, 7), and add edge set <math>E_{38} = \{(7 + 8i, 6)(8 + 8i, 6) \cup (7 + 8i, 7) | 0 \le i \le (m-15) / 8\} \cup (1, 6)(m, 6) \cup (1, 7)(m, 7)$. Thus, a Hamiltonian cycle C on $T_{m,7}$ is built, which is shown in Fig. 35.

Fig. 35 The BHC on $T_{m,7}$

For $|E_1(C)| = 24 + (26 + 2)x = 24 + 28x$ and $|E_2(C)| = 25 + 28x$, *C* satisfies that $||E_1(C)| - |E_2(C)|| = 1$. Undoubtedly, *C* is a BHC of $T_{m,7}$.

Compare Case 3.5 with Case 3.8 for n > 7, the only difference is that Fig. 29 is replaced with Fig. 35, and the else parts of operating are all the same. Then a BHC on $T_{m, n}$ is constructed.

IV. CONCLUSION

By giving Theorem 1 and 2 in this paper, the main result below can be verified. In general cases, there exists a BHC on $T_{m,n}$ for positive integers n, m, except for the situation of $mn \equiv 2 \pmod{4}$. How to find a balanced Hamiltonian cycle in the graph of *k*-dimension Cartesian product for any positive integer *k*, will be the future work.

REFERENCES

- Y. Y. Chin, Binary and M-ary Structure Light Patterns with Gray Coding Rule in Active Non-contact 3D Surface Scanning. Master's Thesis of Department of Computer Science and Information Engineering, National Chi-Nan University, 2009.
- [2] E. Horn and N. Kiryati, "Toward optimal structured light patterns," Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp. 28–35, 1997.
- [3] S. P. Koninckx, and L. V. Gool, "Real-time range acquisition by adaptive structured light," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 28, No. 3, pp. 432–445, 2006.
- [4] S. Novotny, J. Ortiz, and D. A. Narayan, "Minimal k-rankings and the rank number of p₂×p_n," *Information Processing Letters*, vol. 109, pp. 193–198, 2009.
- [5] J. Salvi, J. Pag'es, and J. Batlle, "Pattern codification strategies in structure light systems," *Pattern Recognition*, vol. 37, pp. 827□349, 2004.
- [6] Hou-Ren Wang, *The Balanced Hamiltonian Cycle problem*. Master's Thesis of Department of Computer Science and Information Engineering, National Chi-Nan University, 2011.
- [7] Hou-Ren Wang, Bo-Han Wu and Justie Su-Tzu Juan, "The Balanced Hamiltonian Cycle Problem", manuscript.
- [8] S. H. Wang, 3-D Surface Acquisition with Non-Uniform Albedo Using Structured Light Range Sensor. Master's Thesis of Department of Computer Science and Information Engineering, National Chi-Nan University, 2007.
- [9] Tai-Lung Wu, Edge Ranking Problem on Cartesian Product Graphs. Master's Thesis of Department of Computer Science and Information Engineering, National Chi-Nan University, 2010.