Search results for: fiber-optic sensors
256 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.
Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271255 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593254 Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter
Authors: Roshan Sharma, Bjørn Glemmestad
Abstract:
In gas lifted oil fields, the lift gas should be distributed optimally among the wells which share gas from a common source to maximize total oil production. One of the objectives of the paper is to show that a linear MPC consisting of a control objective and an economic objective can be used both as an optimizer and a controller for gas lifted systems. The MPC is based on linearized model of the oil field developed from first principles modeling. Simulation results show that the total oil production is increased by 3.4%. Difficulties in accurately measuring the bottom hole pressure using sensors in harsh operating conditions can be resolved by using an Unscented Kalman Filter (UKF) for estimation. In oil fields where input disturbance (total supply of gas) is not measured, UKF can also be used for disturbance estimation. Increased total oil production due to optimization leads to increased profit.
Keywords: gas lift, MPC, oil production, optimization, Unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2657253 Piezoelectric Approach on Harvesting Acoustic Energy
Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap
Abstract:
An Acoustic Micro-Energy Harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using Lumped Element Modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Then, AMEH undergoes bandwidth tuning for performance optimization. The AMEH successfully produces 0.9V/(m/s^2) and 1.79μW/(m^2/s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.Keywords: Piezoelectric, acoustic, energy harvester, thermoacoustic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278252 A Survey on Ambient Intelligence in Agricultural Technology
Abstract:
Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.Keywords: Ambient Intelligence, Agricultural technology, smart agriculture, precise farming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211251 Minimizing of Target Localization Error using Multi-robot System and Particle Filters
Authors: Jana Puchyova
Abstract:
In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.Keywords: Multi-robot system, particle filter, position estimation, target localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569250 Blind Source Separation based on the Estimation for the Number of the Blind Sources under a Dynamic Acoustic Environment
Authors: Takaaki Ishibashi
Abstract:
Independent component analysis can estimate unknown source signals from their mixtures under the assumption that the source signals are statistically independent. However, in a real environment, the separation performance is often deteriorated because the number of the source signals is different from that of the sensors. In this paper, we propose an estimation method for the number of the sources based on the joint distribution of the observed signals under two-sensor configuration. From several simulation results, it is found that the number of the sources is coincident to that of peaks in the histogram of the distribution. The proposed method can estimate the number of the sources even if it is larger than that of the observed signals. The proposed methods have been verified by several experiments.Keywords: blind source separation, independent component analysys, estimation for the number of the blind sources, voice activity detection, target extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304249 Non-Invasive Technology on a Classroom Chair for Detection of Emotions Used for the Personalization of Learning Resources
Authors: Carlos Ramirez, Carlos Concha, Benjamin Valdes
Abstract:
Emotions are related with learning processes and physiological signals can be used to detect them for the personalization of learning resources and to control the pace of instruction. A model of relevant emotions has been developed, where specific combinations of emotions and cognition processes are connected and integrated with the concept of 'flow', in order to improve learning. The cardiac pulse is a reliable signal that carries useful information about the subject-s emotional condition; it is detected using a classroom chair adapted with non invasive EMFi sensor and an acquisition system that generates a ballistocardiogram (BCG), the signal is processed by an algorithm to obtain characteristics that match a specific emotional condition. The complete chair system is presented in this work, along with a framework for the personalization of learning resources.Keywords: Ballistocardiogram, emotions in learning, noninvasive sensors, personalization of learning resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665248 Application of Artificial Neural Network in the Investigation of Bearing Defects
Authors: S. Sendhil Kumar, M. Senthil Kumar
Abstract:
Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524247 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner
Authors: Guy Leshem, Ya'acov Ritov
Abstract:
Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3915246 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.
Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265245 Review of Trust Models in Wireless Sensor Networks
Authors: V. Uma Rani, K. Soma Sundaram
Abstract:
The major challenge faced by wireless sensor networks is security. Because of dynamic and collaborative nature of sensor networks the connected sensor devices makes the network unusable. To solve this issue, a trust model is required to find malicious, selfish and compromised insiders by evaluating trust worthiness sensors from the network. It supports the decision making processes in wireless sensor networks such as pre key-distribution, cluster head selection, data aggregation, routing and self reconfiguration of sensor nodes. This paper discussed the kinds of trust model, trust metrics used to address attacks by monitoring certain behavior of network. It describes the major design issues and their countermeasures of building trust model. It also discusses existing trust models used in various decision making process of wireless sensor networks.
Keywords: Attacks, Security, Trust, Trust model, Wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4572244 Signal Generator Circuit Carrying Information as Embedded Features from Multi-Transducer Signals
Authors: Sheroz Khan, Mustafa Zeki, Shihab Abdel Hameed, AHM Zahirul Alam, Aisha Hassan Abdalla, A. F. Salami, W. A. Lawal
Abstract:
A novel circuit for generating a signal embedded with features about data from three sensors is presented. This suggested circuit is making use of a resistance-to-time converter employing a bridge amplifier, an integrator and a comparator. The second resistive sensor (Rz) is transformed into duty cycle. Another bridge with varying resistor, (Ry) in the feedback of an OP AMP is added in series to change the amplitude of the resulting signal in a proportional relationship while keeping the same frequency and duty cycle representing proportional changes in resistors Rx and Rz already mentioned. The resultant output signal carries three types of information embedded as variations of its frequency, duty cycle and amplitude.Keywords: Integrator, Comparator, Bridge Circuit, Resistanceto-Time Converter, Conditioning Circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381243 An Enhanced Key Management Scheme Based on Key Infection in Wireless Sensor Networks
Authors: Han Park, JooSeok Song
Abstract:
We propose an enhanced key management scheme based on Key Infection, which is lightweight scheme for tiny sensors. The basic scheme, Key Infection, is perfectly secure against node capture and eavesdropping if initial communications after node deployment is secure. If, however, an attacker can eavesdrop on the initial communications, they can take the session key. We use common neighbors for each node to generate the session key. Each node has own secret key and shares it with its neighbor nodes. Then each node can establish the session key using common neighbors- secret keys and a random number. Our scheme needs only a few communications even if it uses neighbor nodes- information. Without losing the lightness of basic scheme, it improves the resistance against eavesdropping on the initial communications more than 30%.Keywords: Wireless Sensor Networks, Key Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549242 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System
Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek
Abstract:
Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.Keywords: Mesh network, RFID, wireless sensor network, zigbee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645241 A Selective 3-Anchor DV-Hop Algorithm Based On the Nearest Anchor for Wireless Sensor Network
Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane
Abstract:
Information of nodes’ locations is an important criterion for lots of applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors transmit the localization messages counting a hop count value to the whole network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own position. However the estimative distances can provoke large error, and affect the localization precision. To solve the problem, this paper proposes an algorithm, which makes the unknown nodes fix the nearest anchor as a reference and select two other anchors which are the most accurate to achieve the estimated location. Compared to the DV-Hop algorithm, experiment results illustrate that proposed algorithm has less average localization error and is more effective.
Keywords: Wireless Sensors Networks, Localization problem, localization average error, DV–Hop Algorithm, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960240 Revolution of IoT Development in Smartest City: Review of Smart City Development in Singapore and Hong Kong
Authors: Kwok Tak Kit
Abstract:
A smart city is an urban setting which effectively applies technology to enhance the benefits and provides solution to the shortcoming of urbanization for its citizens while the internet of things (loT) is to connect everything embedded with electronics, software, and sensors to the internet so as to enable them to collect and exchange data. Smart city development encompasses the development and application of IoT technology and prepares for the next generation of connectivity. The governments in the major developed cities and countries across the world already started the race to adopt the IoT technology to transform their cities into smart cities in coming few years. The development of smart city definitely can assist to tackle the problems which impede the quality of life of their citizens and the hindrance of the long-term challenges of sustainability and impacts from pollution. This paper is aims to outline the adoption of IoT in different key sectors in the Singapore and describe the revolution of IoT and its adoption in the smart city.
Keywords: Smart city, internet of things, sustainability, innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684239 Wireless Body Area Network’s Mitigation Method Using Equalization
Authors: Savita Sindhu, Shruti Vashist
Abstract:
A wireless body area sensor network (WBASN) is composed of a central node and heterogeneous sensors to supervise the physiological signals and functions of the human body. This overwhelmimg area has stimulated new research and calibration processes, especially in the area of WBASN’s attainment and fidelity. In the era of mobility or imbricated WBASN’s, system performance incomparably degrades because of unstable signal integrity. Hence, it is mandatory to define mitigation techniques in the design to avoid interference. There are various mitigation methods available e.g. diversity techniques, equalization, viterbi decoder etc. This paper presents equalization mitigation scheme in WBASNs to improve the signal integrity. Eye diagrams are also given to represent accuracy of the signal. Maximum no. of symbols is taken to authenticate the signal which in turn results in accuracy and increases the overall performance of the system.
Keywords: Wireless body area network, equalizer, RLS, LMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815238 Design and Implementation of a Control System for a Walking Robot with Color Sensing and Line Following Using PIC and ATMEL Microcontrollers
Authors: Ibraheem K. Ibraheem
Abstract:
The aim of this research is to design and implement line-tracking mobile robot. The robot must follow a line drawn on the floor with different color, avoids hitting moving object like another moving robot or walking people and achieves color sensing. The control system reacts by controlling each of the motors to keep the tracking sensor over the middle of the line. Proximity sensors used to avoid hitting moving objects that may pass in front of the robot. The programs have been written using micro c instructions, then converted into PIC16F887 ATmega48/88/168 microcontrollers counterparts. Practical simulations show that the walking robot accurately achieves line following action and exactly recognizes the colors and avoids any obstacle in front of it.
Keywords: Color sensing, H-bridge, line following, mobile robot, PIC microcontroller, obstacle avoidance, phototransistor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3253237 Speech Activated Automation
Authors: Rui Antunes
Abstract:
This article presents a simple way to perform programmed voice commands for the interface with commercial Digital and Analogue Input/Output PCI cards, used in Robotics and Automation applications. Robots and Automation equipment can "listen" to voice commands and perform several different tasks, approaching to the human behavior, and improving the human- machine interfaces for the Automation Industry. Since most PCI Digital and Analogue Input/Output cards are sold with several DLLs included (for use with different programming languages), it is possible to add speech recognition capability, using a standard speech recognition engine, compatible with the programming languages used. It was created in this work a Visual Basic 6 (the world's most popular language) application, that listens to several voice commands, and is capable to communicate directly with several standard 128 Digital I/O PCI Cards, used to control complete Automation Systems, with up to (number of boards used) x 128 Sensors and/or Actuators.
Keywords: Speech Recognition, Automation, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839236 Planar Plasmonic Terahertz Waveguides for Sensor Applications
Authors: Maidul Islam, Dibakar Roy Chowdhury, Gagan Kumar
Abstract:
We investigate sensing capabilities of a planar plasmonic THz waveguide. The waveguide is comprised of one dimensional array of periodically arranged sub wavelength scale corrugations in the form of rectangular dimples in order to ensure the plasmonic response. The THz waveguide transmission is observed for polyimide (as thin film) substance filling the dimples. The refractive index of the polyimide film is varied to examine various sensing parameters such as frequency shift, sensitivity and Figure of Merit (FoM) of the fundamental plasmonic resonance supported by the waveguide. In efforts to improve sensing characteristics, we also examine sensing capabilities of a plasmonic waveguide having V shaped corrugations and compare results with that of rectangular dimples. The proposed study could be significant in developing new terahertz sensors with improved sensitivity utilizing the plasmonic waveguides.
Keywords: Terahertz, plasmonic, sensor, sub-wavelength structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224235 Smartphones for In-home Diagnostics in Telemedicine
Authors: Nálevka Petr
Abstract:
Many contemporary telemedical applications rely on regular consultations over the phone or video conferencing which consumes valuable resources such as the time of the doctors. Some applications or treatments allow automated diagnostics on the patient side which only notifies the doctors in case a significant worsening of patient’s condition is measured. Such programs can save valuable resources but an important implementation issue is how to ensure effective and cheap diagnostics on the patient side. First, specific diagnostic devices on patient side are expensive and second, they need to be user-˜friendly to encourage patient’s cooperation and reduce errors in usage which may cause noise in diagnostic data. This article proposes the use of modern smartphones and various build-in or attachable sensors as universal diagnostic devices applicable in a wider range of telemedical programs and demonstrates their application on a case-study – a program for schizophrenic relapse prevention.Keywords: Smartphones, Actigraphy, Telemedicine, In-home Diagnostics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877234 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network
Authors: Jing Zhou, Steven Su, Aihuang Guo
Abstract:
COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.
Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3079233 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: A. Mirrashid, M. Khoshbin, A. Atghaei, H. Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.
Keywords: Attention, fire detection, smoke detection, spatiotemporal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365232 Analysis of Acoustic Emission Signal for the Detection of Defective Manufactures in Press Process
Authors: Dong Hun Kim, Won Kyu Lee, Sok Won Kim
Abstract:
Small cracks or chips of a product appear very frequently in the course of continuous production of an automatic press process system. These phenomena become the cause of not only defective product but also damage of a press mold. In order to solve this problem AE system was introduced. AE system was expected to be very effective to real time detection of the defective product and to prevention of the damage of the press molds. In this study, for pick and analysis of AE signals generated from the press process, AE sensors/pre-amplifier/analysis and processing board were used as frequently found in the other similar cases. For analysis and processing the AE signals picked in real time from the good or bad products, specialized software called cdm8 was used. As a result of this work it was conformed that intensity and shape of the various AE signals differ depending on the weight and thickness of metal sheet and process type.Keywords: press, acoustic emission, signal processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634231 Machine Learning Methods for Environmental Monitoring and Flood Protection
Authors: Alexander L. Pyayt, Ilya I. Mokhov, Bernhard Lang, Valeria V. Krzhizhanovskaya, Robert J. Meijer
Abstract:
More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.Keywords: Early Warning System, intelligent environmentalmonitoring, machine learning, flood protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4086230 Sensorless Control of a Six-Phase Induction Motors Drive Using FOC in Stator Flux Reference Frame
Authors: G. R. Arab Markadeh, J. Soltani, N. R. Abjadi, M. Hajian
Abstract:
In this paper, a direct torque control - space vector modulation (DTC-SVM) scheme is presented for a six-phase speed and voltage sensorless induction motor (IM) drive. The decoupled torque and stator flux control is achieved based on IM stator flux field orientation. The rotor speed is detected by on-line estimating of the rotor angular slip speed and stator vector flux speed. In addition, a simple method is introduced to estimate the stator resistance. Moreover in this control scheme the voltage sensors are eliminated and actual motor phase voltages are approximated by using PWM inverter switching times and the dc link voltage. Finally, some simulation and experimental results are presented to verify the effectiveness and capability of the proposed control scheme.Keywords: Stator FOC, Multiphase motors, sensorless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014229 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach
Authors: Uttam Vijay, Nitin Gupta
Abstract:
Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.
Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482228 Development of a Biomechanical Method for Ergonomic Evaluation: Comparison with Observational Methods
Authors: M. Zare, S. Biau, M. Croq, Y. Roquelaure
Abstract:
A wide variety of observational methods have been developed to evaluate the ergonomic workloads in manufacturing. However, the precision and accuracy of these methods remain a subject of debate. The aims of this study were to develop biomechanical methods to evaluate ergonomic workloads and to compare them with observational methods.
Two observational methods, i.e. SCANIA Ergonomic Standard (SES) and Rapid Upper Limb Assessment (RULA), were used to assess ergonomic workloads at two simulated workstations. They included four tasks such as tightening & loosening, attachment of tubes and strapping as well as other actions. Sensors were also used to measure biomechanical data (Inclinometers, Accelerometers, and Goniometers).
Our findings showed that in assessment of some risk factors both RULA & SES were in agreement with the results of biomechanical methods. However, there was disagreement on neck and wrist postures. In conclusion, the biomechanical approach was more precise than observational methods, but some risk factors evaluated with observational methods were not measurable with the biomechanical techniques developed.
Keywords: Ergonomic, Observational Method, Biomechanical method, Workload.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5102227 A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks
Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili
Abstract:
In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor-s observation noise variance and II) using the estimated variances to obtain the desired parameter. Our proposed algorithm is based on a diffusion least mean square (LMS) implementation with linear combiner model. In the proposed algorithm, the step-size parameter the coefficients of linear combiner are adjusted according to estimated observation noise variances. As the simulation results show, the proposed algorithm considerably improves the diffusion LMS algorithm given in literature.
Keywords: Adaptive filter, distributed estimation, sensor network, diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868