Search results for: Modular neural control
4583 A Neural Computing-Based Approach for the Early Detection of Hepatocellular Carcinoma
Authors: Marina Gorunescu, Florin Gorunescu, Kenneth Revett
Abstract:
Hepatocellular carcinoma, also called hepatoma, most commonly appears in a patient with chronic viral hepatitis. In patients with a higher suspicion of HCC, such as small or subtle rising of serum enzymes levels, the best method of diagnosis involves a CT scan of the abdomen, but only at high cost. The aim of this study was to increase the ability of the physician to early detect HCC, using a probabilistic neural network-based approach, in order to save time and hospital resources.Keywords: Early HCC diagnosis, probabilistic neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12634582 Modified Functional Link Artificial Neural Network
Authors: Ashok Kumar Goel, Suresh Chandra Saxena, Surekha Bhanot
Abstract:
In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work.Keywords: DLFANN, FLANN, M-FLANN, MLP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18034581 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor
Abstract:
This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.
Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22004580 A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy
Authors: Hazem M. El-Bakry
Abstract:
In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.
Keywords: Hopfield Neural Networks, Cross Correlation, Nuclear Magnetic Resonance, Magnetic Resonance Spectroscopy, Fast Fourier Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18454579 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm
Authors: D. Singh, R. Yousefi, M. Boroushaki
Abstract:
Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.
Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22034578 Trajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique
Authors: B. Selma, S. Chouraqui
Abstract:
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.
Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy logic, neural network, nonlinear system, control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17854577 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process
Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17274576 Solving Partially Monotone Problems with Neural Networks
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. Here we consider partially monotone problems, where the target variable depends monotonically on some of the predictor variables but not all. We propose an approach to build partially monotone models based on the convolution of monotone neural networks and kernel functions. The results from simulations and a real case study on house pricing show that our approach has significantly better performance than partially monotone linear models. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: Mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16204575 Predicting Extrusion Process Parameters Using Neural Networks
Authors: Sachin Man Bajimaya, SangChul Park, Gi-Nam Wang
Abstract:
The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters.Keywords: Artificial Neural Network (ANN), Indirect Extrusion, Finite Element Analysis, MES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23684574 Support Vector Machines Approach for Detecting the Mean Shifts in Hotelling-s T2 Control Chart with Sensitizing Rules
Authors: Tai-Yue Wang, Hui-Min Chiang, Su-Ni Hsieh, Yu-Min Chiang
Abstract:
In many industries, control charts is one of the most frequently used tools for quality management. Hotelling-s T2 is used widely in multivariate control chart. However, it has little defect when detecting small or medium process shifts. The use of supplementary sensitizing rules can improve the performance of detection. This study applied sensitizing rules for Hotelling-s T2 control chart to improve the performance of detection. Support vector machines (SVM) classifier to identify the characteristic or group of characteristics that are responsible for the signal and to classify the magnitude of the mean shifts. The experimental results demonstrate that the support vector machines (SVM) classifier can effectively identify the characteristic or group of characteristics that caused the process mean shifts and the magnitude of the shifts.Keywords: Hotelling's T2 control chart, Neural networks, Sensitizing rules, Support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18724573 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.
Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19484572 Signature Recognition Using Conjugate Gradient Neural Networks
Authors: Jamal Fathi Abu Hasna
Abstract:
There are two common methodologies to verify signatures: the functional approach and the parametric approach. This paper presents a new approach for dynamic handwritten signature verification (HSV) using the Neural Network with verification by the Conjugate Gradient Neural Network (NN). It is yet another avenue in the approach to HSV that is found to produce excellent results when compared with other methods of dynamic. Experimental results show the system is insensitive to the order of base-classifiers and gets a high verification ratio.Keywords: Signature Verification, MATLAB Software, Conjugate Gradient, Segmentation, Skilled Forgery, and Genuine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16394571 The Effect on Lead Times When Normalizing a Supply Chain Process
Authors: Bassam Istanbouli
Abstract:
Organizations are living in a very competitive and dynamic environment which is constantly changing. In order to achieve a high level of service, the products and processes of these organizations need to be flexible and evolvable. If the supply chains are not modular and well designed, changes can bring combinatorial effects to most areas of a company from its management, financial, documentation, logistics and its information structure. Applying the normalized system’s concept to segments of the supply chain may help in reducing those ripple effects, but it may also increase lead times. Lead times are important and can become a decisive element in gaining customers. Industries are always under the pressure in providing good quality products, at competitive prices, when and how the customer wants them. Most of the time, the customers want their orders now, if not yesterday. The above concept will be proven by examining lead times in a manufacturing example before and after applying normalized systems concept to that segment of the chain. We will then show that although we can minimize the combinatorial effects when changes occur, the lead times will be increased.Keywords: Supply chain, lead time, normalization, modular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6064570 Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters
Authors: Firas Salih, Luban Hameed, Afaf Kamil, Armin Bolz
Abstract:
Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters.Keywords: Arterial stiffness, area under the catacrotic phase of the photoplethysmograph pulse, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16524569 Stability Analysis of Impulsive Stochastic Fuzzy Cellular Neural Networks with Time-varying Delays and Reaction-diffusion Terms
Authors: Xinhua Zhang, Kelin Li
Abstract:
In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy neural networks with timevarying delays and reaction-diffusion is considered. By utilizing suitable Lyapunov-Krasovskii funcational, the inequality technique and stochastic analysis technique, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive stochastic fuzzy cellular neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of fuzzy neural networks. An example is given to show the effectiveness of the obtained results.
Keywords: Exponential stability, stochastic fuzzy cellular neural networks, time-varying delays, impulses, reaction-diffusion terms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13824568 Electromagnetic Interference Radiation Prediction and Final Measurement Process Optimization by Neural Network
Authors: Hussam Elias, Ninovic Perez, Holger Hirsch
Abstract:
The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we present a method to perform the final phase of Electromagnetic Compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the Conventional Neural Network (CNN). The neural network was trained using real EMC measurements which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meet the maximum radiation value.
Keywords: Conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554567 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network
Authors: Katsumi Hirata
Abstract:
Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.
Keywords: Bispectrum, convolutional neural network, environmental sound, slice bispectrogram, spectrogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6184566 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study
Authors: Raja Das, M. K. Pradhan
Abstract:
This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.
Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31154565 Video Quality assessment Measure with a Neural Network
Authors: H. El Khattabi, A. Tamtaoui, D. Aboutajdine
Abstract:
In this paper, we present the video quality measure estimation via a neural network. This latter predicts MOS (mean opinion score) by providing height parameters extracted from original and coded videos. The eight parameters that are used are: the average of DFT differences, the standard deviation of DFT differences, the average of DCT differences, the standard deviation of DCT differences, the variance of energy of color, the luminance Y, the chrominance U and the chrominance V. We chose Euclidean Distance to make comparison between the calculated and estimated output.Keywords: video, neural network MLP, subjective quality, DCT, DFT, Retropropagation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18064564 Mean Square Exponential Synchronization of Stochastic Neutral Type Chaotic Neural Networks with Mixed Delay
Authors: Zixin Liu, Huawei Yang, Fangwei Chen
Abstract:
This paper studies the mean square exponential synchronization problem of a class of stochastic neutral type chaotic neural networks with mixed delay. On the Basis of Lyapunov stability theory, some sufficient conditions ensuring the mean square exponential synchronization of two identical chaotic neural networks are obtained by using stochastic analysis and inequality technique. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. The feedback controller used in this paper is more general than those used in previous literatures. One simulation example is presented to demonstrate the effectiveness of the derived results.
Keywords: Exponential synchronization, stochastic analysis, chaotic neural networks, neutral type system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15584563 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.
Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17984562 Estimating Reaction Rate Constants with Neural Networks
Authors: Benedek Kovacs, Janos Toth
Abstract:
Solutions are proposed for the central problem of estimating the reaction rate coefficients in homogeneous kinetics. The first is based upon the fact that the right hand side of a kinetic differential equation is linear in the rate constants, whereas the second one uses the technique of neural networks. This second one is discussed deeply and its advantages, disadvantages and conditions of applicability are analyzed in the mirror of the first one. Numerical analysis carried out on practical models using simulated data, and our programs written in Mathematica.
Keywords: Neural networks, parameter estimation, linear regression, kinetic models, reaction rate coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19964561 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks
Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar
Abstract:
Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.
Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29034560 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks
Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian
Abstract:
Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.
Keywords: Desalting unit, Crude oil, Neural Networks, Simulation, Recovery, Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42504559 Neural Networks Learning Improvement using the K-Means Clustering Algorithm to Detect Network Intrusions
Authors: K. M. Faraoun, A. Boukelif
Abstract:
In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a back propagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset.Keywords: Neural networks, Intrusion detection, learningenhancement, K-means clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36114558 Prediction of Slump in Concrete using Artificial Neural Networks
Authors: V. Agrawal, A. Sharma
Abstract:
High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networks (NN) to predict the slump in High Strength Concrete (HSC). Neural Network models is constructed, trained and tested using the available test data of 349 different concrete mix designs of High Strength Concrete (HSC) gathered from a particular Ready Mix Concrete (RMC) batching plant. The most versatile Neural Network model is selected to predict the slump in concrete. The data used in the Neural Network models are arranged in a format of eight input parameters that cover the Cement, Fly Ash, Sand, Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, Super-Plasticizer and Water/Binder ratio. Furthermore, to test the accuracy for predicting slump in concrete, the final selected model is further used to test the data of 40 different concrete mix designs of High Strength Concrete (HSC) taken from the other batching plant. The results are compared on the basis of error function (or performance function).Keywords: Artificial Neural Networks, Concrete, prediction ofslump, slump in concrete
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35974557 Power Forecasting of Photovoltaic Generation
Authors: S. H. Oudjana, A. Hellal, I. Hadj Mahammed
Abstract:
Photovoltaic power generation forecasting is an important task in renewable energy power system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic power generation forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic power generation forecasting error.Keywords: Photovoltaic Power Forecasting, Regression, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37664556 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.
Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22904555 Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory
Authors: Kiranmai S.Rai
Abstract:
The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.Keywords: Anterior subventricular zone (aSVZ) neural stemcell, Clitoria ternatea, Learning and memory, Neurogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30244554 Delay-Dependent Stability Analysis for Neural Networks with Distributed Delays
Authors: Qingqing Wang, Shouming Zhong
Abstract:
This paper deals with the problem of delay-dependent stability for neural networks with distributed delays. Some new sufficient condition are derived by constructing a novel Lyapunov-Krasovskii functional approach. The criteria are formulated in terms of a set of linear matrix inequalities, this is convenient for numerically checking the system stability using the powerful MATLAB LMI Toolbox. Moreover, in order to show the stability condition in this paper gives much less conservative results than those in the literature, numerical examples are considered.
Keywords: Neural networks, Globally asymptotic stability , LMI approach, Distributed delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568