
 

 

 
Abstract—The completion of the EMC regulations worldwide is 

growing steadily as the usage of electronics in our daily lives is 
increasing more than ever. In this paper, we present a method to 
perform the final phase of Electromagnetic Compatibility (EMC) 
measurement and to reduce the required test time according to the 
norm EN 55032 by using a developed tool and the Conventional 
Neural Network (CNN). The neural network was trained using real 
EMC measurements which were performed in the Semi Anechoic 
Chamber (SAC) by CETECOM GmbH in Essen Germany. To 
implement our proposed method, we wrote software to perform the 
radiated electromagnetic interference (EMI) measurements and use the 
CNN to predict and determine the position of the turntable that meet 
the maximum radiation value. 

 
Keywords—Conventional neural network, electromagnetic 

compatibility measurement, mean absolute error, position error.  

I. INTRODUCTION 

N the past few years, there is a growing interest in Artificial 
Neural Networks (ANN). The ANN has its own advantages, 

such as fast running speed, efficiency and the nature of black 
box. At the application level, ANN methods and one part of its 
broader family, deep learning (DL), have been applied to data 
processing, image classification, speech processing and other 
information processing task. Very recently, DL has been further 
extended to complex electromagnetic problems. In the field of 
antenna design and application, DL has been vastly used for the 
optimal design of antennas [1], [2]. In [3], a DL model was used 
to predict the base stations (BS) beamforming vectors directly 
from the signals received at the distributed BSs using only omni 
or quasi-omni beam patterns.  

Recently, an innovative method based on ANN provides an 
alternative approach for radiation emission or EMI. In [4], Deep 
Neural Network (DNN) was used for the optimization of 3D 
integrated circuits and systems. In [5] the artificial network was 
used to predict the maximum radiated emission from printed 
circuit boards (PCB). 

The number of electromagnetic emission sources are 
increasing by the increasing of clock frequency and integration 
density of electronic products in everyday life. These sources 
are becoming more compound, and in many cases, the products 
emit a lot of unwanted signals to another. Moreover, the 
increasing complexity of the electromagnetic emission 
environment is also caused by electronic devices that are  
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evolving towards higher frequencies, smaller designs with 
limited electromagnetic emissions in measurements and lower 
power levels of operation.  

Any product on the market which uses electronic circuitry 
must comply with EMC requirements. To meet EMC 
requirements the product must be tested for conducted and 
radiated emissions. The radiated emission tests are carried out 
in a 3 m or 10 m semi-anechoic chamber.  

There are some noticeable drawbacks of the conventional 
SAC EMC technique: 
‐ It is time-consuming for EMC radiated testing. In order to 

be able to capture EMI emission in any direction and for all 
possible test setups, one has to turn a turntable, change the 
antenna height, and measure in two polarizations. 

‐ Furthermore, all the measurement equipment also has to 
follow requirements defined by CISPR 16-1 standard [6]. 

‐ The cost and the test time which are a big problem when 
we want to measure the emission in SAC. 

In this paper, a measurement method is proposed to reduce 
the requested test time to perform EMI radiated measurement 
in SAC below 1 GHz by using a DNN. 

The rest of this paper is organized as follows: in Section II, 
the performance of the electromagnetic measurement is 
discussed, the 1D convolution neural network is cleared in 
Section III, while Sections IV and V explain the construction of 
the proposed 1D CNN and the implementation of the 
measurement method. In Section VI we compare our results 
with the real measurements done in SAC. Finally, Section VII 
concludes the paper. 

II. ELECTROMAGNETIC EMISSION MEASUREMENT 

PERFORMANCE IN SAC 

Measurements between 30 MHz and 1 GHz are performed in 
a Normalized Site Attenuation (NSA) compliant SAC 
according to the EMC basic standard. The test site is compliant 
to CISPER 16-1-4:2010 and ANSI C63.4:2009 chap 5.4.2 to 
5.4.4 [7]. 

The measurement distance is reduced from 10 m to 3 m and 
therefore an inverse proportionality factor of 20 dB per decade 
(according to CISPER 11/to CISPER 22/ANSI c63.4/VITR) is 
used. A transducer factor with -10.46 dB is used to normalize 
the measurement results to the specified distance (10 m). 
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Fig. 1 The set-up of SAC for EMC radiated emission test under 1 
GHz 

 
To perform the measurement procedure two steps are 

needed: 
‐ Pre-measurement: The equipment under test (EUT) is set 

in the worst-case operating mode determined. The test is 
done by variation of turntable positions, the Azimuth step 
of the turntable is set to 90°, and for every position the 
antenna is set to heights (1.05 m and 1.82 m) and two 
polarizations (horizontal/vertical). The tests are also 
carried out with peak detector (PK), repetitive scan and 
max-hold mode. The results are documented and the  peak 
values are not maximized and these values closer than 6 dB 
to the limit line are considered as critical frequencies. If no 
critical frequencies are found (margin to limit less than 6 
dB), the final measurement will be omitted. 

‐ Final measurement: a maximum search is done with PK 
and Quasi-Peak CISPR QP detectors for the critical 
frequencies. First, a frequency zoom within (+/- 10*IF-
BW) of the critical frequency is performed, then the EUT 
is rotated continuously and the antenna height will be 
changed between 1 m and 4 m in order to find the worst 
position. After defining the worth position, final 
measurements with QP detector are carried out in this 
position and the values are stored. 

III. 1D CONVOLUTIONAL NEURAL NETWORKS 

The Convolutional Neural Network (CNN) was firstly 
introduced in [8]. It consists of a convolution layer, pooling 
layer and another hidden layer. It has the advantage of 
incomplete connection, relatively simple model structure and 
strong data features extraction ability. CNNs have been widely 
applied in pattern recognition sample classification, prediction 
and other fields. They are designed to operate exclusively on 
2D data such as images and videos. This is why they are mostly 
referred as ‘2D’ CNNs. Recently, a modified version of 2D 
CNNs have been developed and called 1D convolutional neural 
networks (1D CNN) [10], [11]. 1D CNNs show many 
advantages to 2D CNNs.  
‐ Under the equivalent conditions, the computational 

complexity of a 1D CNN is significantly lower than the 2D 
CNN. 

‐ Most 1D CNN applications use compact (with 1-2 hidden 
CNN Layers) configurations with networks that have less 
than 10 k parameters whereas almost all 2D CNN 
applications have used deep architectures with more than 1 

M parameters. Obviously, networks with shallow 
architectures are much easier to train and implement. 

‐ Because of their low computational requirements, 1D 
CNNs are well-suited for real-time and low-cost 
applications, especially on a mobile device. 

The 1D CNNs have demonstrated a superior performance on 
those application that have a limited labeled data and high 
signal variation acquired from different sources. 

IV. CONSTRUCTION OF THE PROPOSED 1D CNN MODEL TO 

PREDICT THE ELECTROMAGNETIC RADIATION EMISSION IN 

SAC 

We briefly introduced the stags to build a 1D model to predict 
the electromagnetic radiation emission according to the norm 
EN 55032_Class B [9]. 

a. Dataset Source 

In this paper, we used a dataset derived from the final 
measurements, these measurements were done using Rode & 
Schwarz EMC32 software in SAC by CETECOM GmbH in 
Essen, Germany as illustrated in Fig. 2. The EUT does not have 
a big difference in size or volume. At first, the pre-measurement 
was performed, EUT is set under the worst case and 16 sweeps 
(4 turntable positions, 2 heights and 2 polarizations of antenna). 
After that, the final measurements were performed for the 
critical frequencies to determine the worst turntable (0°-359°) 
position and antenna height (1.05 m-3.59 m). We used these 
turntable sweep files for learning processing for our proposed 
measurement method using 1D CNN mode. 

The final dataset contains six features (EUT position angles, 
Radiation Level (dBm/uV), Antenna Polarization (H/V), EUT 
Polarization (H/V), Correlation Factor (dB) and critical 
frequency (MHz)). 

b.  Data Processing 

Firstly, it is necessary to understand the data before 
beginning the build of the proposed NN module. Next, it is 
important to be sure that the model is being passed 
appropriately formatted data. To do this, a few processing steps 
are needed before feeding data to the CNN model: 

Data Interpolation  

The Rode & Schwarz EMC32 software saves the sweep 
values for the variation of turntable positions as RESULT File 
(Result). These saved files contain two columns of values, one 
for turntable position angles and the other for the related 
electrical field values. The turntable rotation step was not the 
same at every measurement, so we needed to interpolate the 
saved file data and resave them as a sequence in range (0°-359°) 
with 1-degree rotation step.  

Data Split 

As typically recommended, the dataset was blindly separated 
into three subsets as follows: 70% for training, 15% for 
validation and 15% for testing the network. The dataset will not 
be shuffled before splitting to indemnify that loping off the data 
into windows of consecutive samples is still possible and to 
ensure that the validation-test results, being evaluated on the 
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dataset after the model was trained, are more realistic. We 
divided the sequence into multiple input/output patterns called 
samples. The CNN model will learn a function that maps a 
sequence of past observations as input to an output observation. 

Data Normalization  

Considering that features of the collected data sets have 
different dimensions and units, the original data should be 
normalized first to ensure that these features have the same 
order of magnitude. Normalization of the features has the 
additional benefit of improving the accuracy of the DNN model 
and accelerating its training process. It is done by subtracting 
the mean and dividing by the standard deviation of each feature. 
Only the training dataset should be used to compute the mean 
and standard deviation so that the models have no access to the 
values in the validation and test set.  

Data Windowing 

Windows of consecutive samples from the dataset will be 
used to get the predicted values. The main features of these 
windows are the width (sum of the input values (measured) 
steps and label values (predicted steps (in our case is 360 
steps)), offset between them and which features used as inputs, 
labels or both. Every window will be split and converted to a 
window of inputs and a window of labels. Fig. 3 illustrates the 
data windowing process. 

 

 

Fig. 2 The set-up of SAC for EMI radiated emission according to EN 
55032 in Cetecom Essen, Germany 

 

 

Fig. 3 Data Split to Input and Output (labels) to be used as learning 
data for Neural Network 

c. Training and Validation of the 1D CNN 

The data in our dataset will be divided into standard single 
sequences. This sequence begins at angle = 0° and ends at 359°. 
Every sequence will be transformed into input/output samples to 
train the model. The number of the steps as inputs will be the 
number we chose when we prepared our dataset. Our module 
was built depending on the Multivariate Multi-step CNN model 
[12]. The architecture of the model is depicted in Fig. 4. 

 

Input_1:InputLayer 
Input: (batch, Steps, features) 

 Output: (batch, Steps, features)  

 

Input_1:InputLayer 
Input: (batch, Steps, features) 

 Output: (batch, Conv_width, features)  

 

Conv1d:Conv1D 
Input: (batch, Conv_width, features)  

 Output: (batch, 1, out_steps*features)  

 

Dense 
Input: (batch,1, out_ steps*features) 

 Output: (batch, out_steps, features)  

Fig. 4 The architecture of Multivariate Multi-step 1D CNN mode 
 

We used the following parameters to train our module: Node 
number = 32, batch size = 360, convolution width = 3, features 
= 6, filters = 256, max_epoch =300. We have used the Relu [13] 
as activation function. 

The model was trained using different input/output steps 
((45°, 315°), (90°, 270°), (135°, 125°), (180°, 180°), (225°, 
135°), (270°, 90°), (315°, 45°)) and saved separately. Fig. 5 
illustrated the different scenarios used to train our 1D CNN. 

Early stopping technique was used to avoid overfitting and 
assuring better generalization performance. Inter Quartile Range 
(IQR) approach filter was used to find the outliers in the training 
database, then they were removed from the database and 
replaced with the mean of the before and next values. The Adam 
optimizer is demonstrated to have faster and more stable 
convergence in the training process, which also illustrates the 
best accuracy in this work. 

The model was validated and evaluated with test data. Mean 
Absolute Error is selected as criteria for training and validation 
loss on our database. The form of MAE is as below [14]: 

 

𝑀𝐸𝐴 ∑ ∣ 𝑌 𝑋 ∣         (1) 

 
𝑌  𝑎𝑛𝑑 𝑋  represent the observed and predicted value for the ith 
observation, n is the total number of observations. Fig. 6 shows 
the training and validation results for scenario 7. 

From Fig. 6, it is evident from the training and validation 
curves that the model is overfitting. The training and validation 
losses start to diverge considerably after 100 epochs. The loss of 
the model will almost always be lower on the training dataset 
than the validation dataset. This means that we should expect 
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some gap between the train and validation loss learning curves 
and that because of the applying outliner filter on train data. 

 

 

Fig. 5 Different scenarios for Input/Output steps of Multivariate Multi-
step CNN mode 

 

 

Fig. 6 Training and validation loss for input sequence (0°-315°) 
 

The overall performance of our module for different output 
range is illustrated by Fig. 7. 

V. CONSTRUCTION OF THE PROPOSED 1D CNN MODEL TO 

PREDICT THE ELECTROMAGNETIC RADIATION EMISSION IN 

SAC 

To implement our proposed measurement method, we 
developed a software to perform EMI radiation measurements 
between 30 MHz and 1 GHz as shown in Fig. 8. This software 
had been written with Python. It measures the EMI radiation 
according to Norm EN 55032. After EUT is set in the worst-
case operating mode, pre-measurement will be done. By setting 

the turntable at four different azimuths and the antenna at two 
heights. The software will consider that values closer than 6 dB 
to the limit line are critical frequencies. 

 

 

Fig. 7 The overall performance of the our 1D CNN module for 
different input ranges 

 
The software will implement maximum search with PK and 

Quasi-Peak CISPR QP detectors for the critical frequencies. 
After the setting of frequency zoom, then the software will 
measure the radiation by rotate the turntable continuously until 
certain angle depends on chosen scenario configuration. 

Measurement result will be interpolated to 1° step and used 
with the polarizations of EUT and antenna, critical frequency 
and the total attention at this frequency (the attention values 
tables were defined in our software), as inputs to our trained 
CNN model, which will predict the residual radiation values 
until 359° and returns the turntable position of the founded worth 
case (maximal radiation value). After that, the antenna height 
changed between 1.05 m and 3.59 m (the setting for SAC in 
Cetecom, Essen) in order to find the height of the worst position. 
After defining the worst position, the final measurement with QP 
detector is carried out in this position and the value is stored as 
a final result. 

IV. PERFORMANCE AND EFFICIENCY COMPARISON  

With the aim to verify the proposed measurement method, 
we compare the predicted results calculated from our software 
using 1D CNN model, and the target labeled results from Rode 
& Schwarz EMC32 software. The final measurement values of 
the radiation during the continuous rotation of the turntable for 
determining critical frequency acquired from our developed 
Software, EUT, antenna polarization and the total transducer 
function were used as input to our module. We used seven 
different scenarios by using seven different inputs to predict the 
radiation values and find the maximum radiation position 
(worth case position). The input data will be first interpolated 
and processed, after that will be sent to 1D CNN module to get 
the predicted values. These values will compare with the values 
from EMC32 software. 
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Fig. 8 GUI of our software to performance our proposed measurement method and many EMC measurements 
 

Fig. 9 exhibits three EMI measurements for three different 
EUTS were carried out using our developed software in SAC. 
We picked up one critical frequency from each of them, the 
final measurement is carried out by our developed software as 
described in EN 55032 in a certain range depending on the 
selected scenario and used these values, critical frequency, EUT 
and antenna polarizations, will be used as inputs for our 
proposed neural network model which predicted the residual 
radiation values till 359°, to find turntable angle for the 
maximal radiation level and returned this position to our EMC 
software to set the turntable at this predicted position. Table I 
illustrates the inputs parameters for the tested seven scenarios 
which will be fed in addition to the radiation measured value in 
certain angles range to our neural network. 

 
TABLE I 

THE CHOSEN CRITICAL FREQUENCIES FROM THE EMI MEASUREMENTS IN 

SAC 
Measurement Critical 

Frequency 
MHz 

EUT 
Polarization 

Antenna 
Polarization 

Transducer 
factor 
(dB)

measurement 1 124.99 H V 1.98 

measurement 2 115.68 V V 1.9 

measurement 3 648.01 H H 12.7 

 

Figs. 10-12 compare the radiation values measured by 
complete variation of turntable positions using Rode & 
Schwarz software with the predicted radiation values from our 
CNN. The blue points represent the measured values that we 
used as an Input to our CNN in addition to other inputs from 
Table I. The length of this input sequence variance depended on 
the selected tested scenario, red points are the predicted values 

and the green points represent the residual radiation values from 
EMC software which will be compared with our CNN outputs: 

The turntable position correspondent to the maximal 
radiation value was determined for the exhibit and predicted 
radiation values for the picked critical frequencies, then 
position and radiation level errors were calculated. 

From Fig. 11, we can see that the predicted values in the 
range above 270° are clearly different from the real ones, and 
due to the outliner filter, we used it by preparation data to be 
used for the neural network learning process. After that, the 
height of the antenna is changed in a set range (1.05 m till 3.59 
m) to find the height corresponding to the maximal radiation. 

Tables II-IV show the position and radiation level errors of 
predicted angel, while the radiation level for the critical 
frequencies is shown in Table I for the different scenarios. 

 
TABLE II 

POSITION, RADIATION LEVEL AND MEAN ABSOLUTE ERRORS FOR THE FIRST 

CHOSEN CRITICAL FREQUENCY TO DEFINE THE POSITION OF MAX RADIATION 

(F = 124.99 MHZ, REAL TURNTABLE ANGLE = 201°, REAL RADIATION LEVEL 

= 28.8449 DBUV\M) 

Scenario

Predicated 
Angle (Position 

of max 
Radiation) 
(degree)

Predicated 
radiation 

level 
dBmuV/m 

Position 
Error 

Radiation 
Level 
Error 

MEA 

1 184 27.7048 8.4577% 4.1335% 30.774%

2 223 28.939 10.953% 0.137% 30.212%

3 213 28.3142 5.9701% 2.025% 32.151%

4 201 28.8944 0% 0.0291% 25.801%

5 201 0% 0% 0% 28.955%

6 201 0% 0% 0% 21.308%

7 201 0% 0% 0% 2.019% 
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(a)                  (b) 
 

 

(c) 

Fig. 9 EMI measurements results for three different EUTs in SAC, Cetecom GmbH, Essen, Germany
 

 

(a)                   (b) 

Fig. 10 Position and radiation level errors of predicted angle and radiation level for critical frequency 124.99 MHz and inputs range, (a) (0°-
45°), (b) (0°-135°) 
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(a)                      (b) 

Fig. 11 Position and radiation level errors of Predicted Angle and radiation level for critical frequency 115.68 MHz and inputs range, (a) 
(0°_45°), (b) (0°-90°) 

 

 

(a)                        (b) 

Fig. 12 Position and radiation level errors of Predicted Angle and radiation level for critical frequency 648.01 MHz and inputs range, (a) 
(0°_45°), (b) (0°-90°) 

 
TABLE III 

POSITION, RADIATION LEVEL AND MEAN ABSOLUTE ERRORS FOR THE FIRST 

CHOSEN CRITICAL FREQUENCY TO DEFINE THE POSITION OF MAX RADIATION 

(F = 115.68 MHZ, REAL TURNTABLE ANGLE = 100°, REAL RADIATION LEVEL 

= 21.349 DBUV\M) 

Scenario 

Predicated 
Angle (Position 

of max 
Radiation) 
(degree) 

Predicated 
radiation 

level 
dBmuV/m 

Position 
Error 

Radiation 
Level 
Error 

MEA 

1 105 21.4861 5.0% 0.4309% 46.613%

2 101 21.3455 1.0% 0.2265% 83.996%

3 100 21.349 0% 0% 78.922%

4 100 21.349 0% 0% 21.092%

5 100 21.349 0% 0% 18.649%

6 100 21.349 0% 0% 32.907%

7 100 21.349 0% 0% 18.203%

 
 

TABLE IV 
POSITION, RADIATION LEVEL FREQUENCY AND MEAN ABSOLUTE ERRORS 

FOR THE FIRST CHOSEN CRITICAL FREQUENCY TO DEFINE THE POSITION OF 

MAX RADIATION (F = 648.01 MHZ, REAL TURNTABLE ANGLE = 177°, REAL 

RADIATION LEVEL = 32.8791 DBUV\M) 

Scenario 

Predicated Angle 
(Position of max 

Radiation) 
(degree)

Predicated 
radiation 

level 
dBmuV/m 

Position 
Error 

Radiation 
Level 
Error 

MEA 

1 180 31.358 1.6949% 4.6262% 17.863%

2 183 31.2061 3.3898% 5.0883% 17.348%

3 176 31.9705 0.565% 2.7634% 34.203%

4 180 33.5625 1.6949% 2.0787% 27:373%

5 177 32.8791 0% 0% 21.581%

6 177 32.8791 0% 0% 5.7773%

7 177 32.8791 0% 0% 1.1283%

 

By comparing real and predicted radiation levels in Tables 
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III and IV, it can be seen that the errors by determining that the 
turntable angle and radiation value are very small. Fig. 13 
shows the average position and level errors. 

 

 

Fig. 13 Average position Error/Saved time of final measurement of 
seven scenario 

 
Fig. 13 highlights that we can save 87.5% of the required 

time to carry out the final measurement to find the turntable 
angle that meets the maximal radiation level. 

VI. CONCLUSION 

In this paper, an approach was described to predict the 
radiation emission during the turntable movement by the final 
measurement and to determine the maximum radiated emission 
position using 1D CNN. Real EMI measurements were used to 
train the CNN. The database was processed and then fit to our 
neural network using seven different scenarios applied on three 
EMI measurements and then compared with the results from 
Rohde & Schwarz EMC32 software. With an average error 
below 5% for position prediction for the total experiments, the 
results show that the prediction performance of the proposed 
measured method could successfully reduce the needed time to 
determine the worth position of EUT during the final 
measurement phase. The proposed measurement method can be 
considered as a prospective cost-effective and time-efficient 
EMC measuring method that leads to achieving faster real-time 
operation and EMI measurements in the case of many critical 
frequencies by using one EMI measurement during the 
development process of electronic products which will be  tested 
repeatedly to verify acceptable compatibility with other 
electronic products. 
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