Search results for: Invariant Features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1637

Search results for: Invariant Features

1367 A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix

Authors: Mehran Yazdi, Kazem Gheysari

Abstract:

In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.

Keywords: Biometrics, fingerprint classification, gray level cooccurrence matrix, regular texture representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
1366 Machine Learning Approach for Identifying Dementia from MRI Images

Authors: S. K. Aruna, S. Chitra

Abstract:

This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.

Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
1365 The Experience with SiC MOSFET and Buck Converter Snubber Design

Authors: P. Vaculik

Abstract:

The newest semiconductor devices on the market are MOSFET transistors based on the silicon carbide – SiC. This material has exclusive features thanks to which it becomes a better switch than Si – silicon semiconductor switch. There are some special features that need to be understood to enable the device’s use to its full potential. The advantages and differences of SiC MOSFETs in comparison with Si IGBT transistors have been described in first part of this article. Second part describes driver for SiC MOSFET transistor and last part of article represents SiC MOSFET in the application of buck converter (step-down) and design of simple RC snubber. 

Keywords: SiC, Si, MOSFET, IGBT, SBD, RC snubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5589
1364 Using Different Aspects of the Signings for Appearance-based Sign Language Recognition

Authors: Morteza Zahedi, Philippe Dreuw, Thomas Deselaers, Hermann Ney

Abstract:

Sign language is used by the deaf and hard of hearing people for communication. Automatic sign language recognition is a challenging research area since sign language often is the only way of communication for the deaf people. Sign language includes different components of visual actions made by the signer using the hands, the face, and the torso, to convey his/her meaning. To use different aspects of signs, we combine the different groups of features which have been extracted from the image frames recorded directly by a stationary camera. We combine the features in two levels by employing three techniques. At the feature level, an early feature combination can be performed by concatenating and weighting different feature groups, or by concatenating feature groups over time and using LDA to choose the most discriminant elements. At the model level, a late fusion of differently trained models can be carried out by a log-linear model combination. In this paper, we investigate these three combination techniques in an automatic sign language recognition system and show that the recognition rate can be significantly improved.

Keywords: American sign language, appearance-based features, Feature combination, Sign language recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
1363 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: Opinion mining, product feature extraction, sentiment analysis, SentiWordNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
1362 Face Detection in Color Images using Color Features of Skin

Authors: Fattah Alizadeh, Saeed Nalousi, Chiman Savari

Abstract:

Because of increasing demands for security in today-s society and also due to paying much more attention to machine vision, biometric researches, pattern recognition and data retrieval in color images, face detection has got more application. In this article we present a scientific approach for modeling human skin color, and also offer an algorithm that tries to detect faces within color images by combination of skin features and determined threshold in the model. Proposed model is based on statistical data in different color spaces. Offered algorithm, using some specified color threshold, first, divides image pixels into two groups: skin pixel group and non-skin pixel group and then based on some geometric features of face decides which area belongs to face. Two main results that we received from this research are as follow: first, proposed model can be applied easily on different databases and color spaces to establish proper threshold. Second, our algorithm can adapt itself with runtime condition and its results demonstrate desirable progress in comparison with similar cases.

Keywords: face detection, skin color modeling, color, colorfulimages, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
1361 Feature-Driven Classification of Musical Styles

Authors: A. Buzzanca, G. Castellano, A.M. Fanelli

Abstract:

In this paper we address the problem of musical style classification, which has a number of applications like indexing in musical databases or automatic composition systems. Starting from MIDI files of real-world improvisations, we extract the melody track and cut it into overlapping segments of equal length. From these fragments, some numerical features are extracted as descriptors of style samples. We show that a standard Bayesian classifier can be conveniently employed to build an effective musical style classifier, once this set of features has been extracted from musical data. Preliminary experimental results show the effectiveness of the developed classifier that represents the first component of a musical audio retrieval system

Keywords: Musical style, Bayesian classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
1360 Enhancing capabilities of Texture Extraction for Color Image Retrieval

Authors: Pranam Janney, Sridhar G, Sridhar V.

Abstract:

Content-Based Image Retrieval has been a major area of research in recent years. Efficient image retrieval with high precision would require an approach which combines usage of both the color and texture features of the image. In this paper we propose a method for enhancing the capabilities of texture based feature extraction and further demonstrate the use of these enhanced texture features in Texture-Based Color Image Retrieval.

Keywords: Image retrieval, texture feature extraction, color extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1359 DWT-SATS Based Detection of Image Region Cloning

Authors: Michael Zimba

Abstract:

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency subband of the DWT of the suspicious image thereby leaving valuable information in the other three subbands, the proposed algorithm simultaneously extracts features from all the four subbands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates. 

Keywords: Affine Transformation, Discrete Wavelet Transform, Radix Sort, SATS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1358 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: Communication signal, feature extraction, holder coefficient, improved cloud model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
1357 Obstacle and Collision Avoidance Control Laws of a Swarm of Boids

Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj

Abstract:

This paper proposes a new obstacle and collision avoidance control laws for a three-dimensional swarm of boids. The swarm exhibit collective emergent behaviors whilst avoiding the obstacles in the workspace. While flocking, animals group up in order to do various tasks and even a greater chance of evading predators. A generalized algorithms for attraction to the centroid, inter-individual swarm avoidance and obstacle avoidance is designed in this paper. We present a set of new continuous time-invariant velocity control laws is presented which is formulated via the Lyapunov-based control scheme. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws is demonstrated via computer simulations

 

Keywords: Lyapunov-based Control Scheme, Motion planning, Practical stability, Swarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494
1356 Drivers of Customer Satisfaction in an Industrial Company from Marketing Aspect

Authors: M. Arefi, A.M. Amini, K. Fallahi

Abstract:

One of the basic concepts in marketing is the concept of meeting customers- needs. Since customer satisfaction is essential for lasting survival and development of a business, screening and observing customer satisfaction and recognizing its underlying factors must be one of the key activities of every business. The purpose of this study is to recognize the drivers that effect customer satisfaction in a business-to-business situation in order to improve marketing activities. We conducted a survey in which 93 business customers of a manufacturer of Diesel Generator in Iran participated and they talked about their ideas and satisfaction of supplier-s services related to its products. We developed the measures for drivers of satisfaction first by as investigative research (by means of feedback from executives and customers of sponsoring firm). Then based on these measures, we created a mail survey, and asked the respondents to explain their opinion about the sponsoring firm which was a supplier of diesel generator and similar products. Furthermore, the survey required the participants to mention their functional areas and their company features. In Conclusion we found that there are three drivers for customer satisfaction, which are reliability, information about product, and commercial features. Buyers/users from different functional areas attribute different degree of importance to the last two drivers. For instance, people from buying and management areas believe that commercial features are more important than information about products. But people in engineering, maintenance and production areas believe that having information about products is more important than commercial aspects. Marketing experts should consider the attribute of customers regarding information about the product and commercial features to improve market share.

Keywords: B2B, Customer satisfaction, Commercial, Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
1355 A Feature-based Invariant Watermarking Scheme Using Zernike Moments

Authors: Say Wei Foo, Qi Dong

Abstract:

In this paper, a novel feature-based image watermarking scheme is proposed. Zernike moments which have invariance properties are adopted in the scheme. In the proposed scheme, feature points are first extracted from host image and several circular patches centered on these points are generated. The patches are used as carriers of watermark information because they can be regenerated to locate watermark embedding positions even when watermarked images are severely distorted. Zernike transform is then applied to the patches to calculate local Zernike moments. Dither modulation is adopted to quantize the magnitudes of the Zernike moments followed by false alarm analysis. Experimental results show that quality degradation of watermarked image is visually transparent. The proposed scheme is very robust against image processing operations and geometric attacks.

Keywords: Image watermarking, Zernike moments, Featurepoint, Invariance, Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
1354 Examining the Pearlite Growth Interface in a Fe-C-Mn Alloy

Authors: R. E. Waters, M. J. Whiting, V. Stolojan

Abstract:

A method of collecting composition data and examining structural features of pearlite lamellae and the parent austenite at the growth interface in a 13wt. % manganese steel has been demonstrated with the use of Scanning Transmission Electron Microscopy (STEM). The combination of composition data and the structural features observed at the growth interface show that available theories of pearlite growth cannot explain all the observations.

Keywords: Interfaces, Phase transformations, Pearlite, Scanning Transmission Electron Microscopy (STEM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
1353 Shift Invariant Support Vector Machines Face Recognition System

Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas

Abstract:

In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.

Keywords: Face recognition, support vector machines, shiftinvariance, image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1352 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: Recognition, CNN, convolutional neural network, Yi character, divergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
1351 MPSO based Model Order Formulation Scheme for Discrete PID Controller Design

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes the novel model order formulation scheme to design a discrete PID controller for higher order linear time invariant discrete systems. Modified PSO (MPSO) based model order formulation technique has used to obtain the successful formulated second order system. PID controller is tuned to meet the desired performance specification by using pole-zero cancellation and proposed design procedures. Proposed PID controller is attached with both higher order system and formulated second order system. System specifications are tabulated and closed loop response is observed for stabilization process. The proposed method is illustrated through numerical examples from literature.

Keywords: Discrete PID controller, Model Order Formulation, Modified Particle Swarm Optimization, Pole-Zero Cancellation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
1350 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding

Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard

Abstract:

Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and biosensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434 . In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.

Keywords: Flow length, micro-cantilevers, micro injection moulding, microfabrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1349 The Analysis of Deceptive and Truthful Speech: A Computational Linguistic Based Method

Authors: Seham El Kareh, Miramar Etman

Abstract:

Recently, detecting liars and extracting features which distinguish them from truth-tellers have been the focus of a wide range of disciplines. To the author’s best knowledge, most of the work has been done on facial expressions and body gestures but only few works have been done on the language used by both liars and truth-tellers. This paper sheds light on four axes. The first axis copes with building an audio corpus for deceptive and truthful speech for Egyptian Arabic speakers. The second axis focuses on examining the human perception of lies and proving our need for computational linguistic-based methods to extract features which characterize truthful and deceptive speech. The third axis is concerned with building a linguistic analysis program that could extract from the corpus the inter- and intra-linguistic cues for deceptive and truthful speech. The program built here is based on selected categories from the Linguistic Inquiry and Word Count program. Our results demonstrated that Egyptian Arabic speakers on one hand preferred to use first-person pronouns and present tense compared to the past tense when lying and their lies lacked of second-person pronouns, and on the other hand, when telling the truth, they preferred to use the verbs related to motion and the nouns related to time. The results also showed that there is a need for bigger data to prove the significance of words related to emotions and numbers.

Keywords: Egyptian Arabic corpus, computational analysis, deceptive features, forensic linguistics, human perception, truthful features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
1348 Rock Textures Classification Based on Textural and Spectral Features

Authors: Tossaporn Kachanubal, Somkait Udomhunsakul

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Texture classification, SFM, neural network, rock texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
1347 Real-Time Identification of Media in a Laboratory-Scaled Penetrating Process

Authors: Sheng-Hong Pong, Herng-Yu Huang, Yi-Ju Lee, Shih-Hsuan Chiu

Abstract:

In this paper, a neural network technique is applied to real-time classifying media while a projectile is penetrating through them. A laboratory-scaled penetrating setup was built for the experiment. Features used as the network inputs were extracted from the acceleration of penetrator. 6000 set of features from a single penetration with known media and status were used to train the neural network. The trained system was tested on 30 different penetration experiments. The system produced an accuracy of 100% on the training data set. And, their precision could be 99% for the test data from 30 tests.

Keywords: back-propagation, identification, neural network, penetration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
1346 Innovativeness of the Furniture Enterprises in Bulgaria

Authors: Radostina Popova

Abstract:

The paper presents an analysis of the innovation performance of small and medium-sized furniture enterprises in Bulgaria, accounting for over 97% of the companies in the sector. It contains advanced features of innovation in enterprises, specific features of the furniture industry in Bulgaria and analysis of the results of studies on the topic. The results from studies of three successive periods - 2006-2008; 2008-2010; 2010-2012, during which were studied 594 small and medium-sized furniture enterprises. There are commonly used in the EU definitions and indicators (European Commission, OECD, Oslo Manual), which allows for the comparability of results.

Keywords: Innovation activity, competitiveness of innovation, furniture enterprises in Bulgaria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
1345 Product Feature Modelling for Integrating Product Design and Assembly Process Planning

Authors: Baha Hasan, Jan Wikander

Abstract:

This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.

Keywords: Assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
1344 Topology Preservation in SOM

Authors: E. Arsuaga Uriarte, F. Díaz Martín

Abstract:

The SOM has several beneficial features which make it a useful method for data mining. One of the most important features is the ability to preserve the topology in the projection. There are several measures that can be used to quantify the goodness of the map in order to obtain the optimal projection, including the average quantization error and many topological errors. Many researches have studied how the topology preservation should be measured. One option consists of using the topographic error which considers the ratio of data vectors for which the first and second best BMUs are not adjacent. In this work we present a study of the behaviour of the topographic error in different kinds of maps. We have found that this error devaluates the rectangular maps and we have studied the reasons why this happens. Finally, we suggest a new topological error to improve the deficiency of the topographic error.

Keywords: Map lattice, Self-Organizing Map, topographic error, topology preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
1343 Emotion Classification by Incremental Association Language Features

Authors: Jheng-Long Wu, Pei-Chann Chang, Shih-Ling Chang, Liang-Chih Yu, Jui-Feng Yeh, Chin-Sheng Yang

Abstract:

The Major Depressive Disorder has been a burden of medical expense in Taiwan as well as the situation around the world. Major Depressive Disorder can be defined into different categories by previous human activities. According to machine learning, we can classify emotion in correct textual language in advance. It can help medical diagnosis to recognize the variance in Major Depressive Disorder automatically. Association language incremental is the characteristic and relationship that can discovery words in sentence. There is an overlapping-category problem for classification. In this paper, we would like to improve the performance in classification in principle of no overlapping-category problems. We present an approach that to discovery words in sentence and it can find in high frequency in the same time and can-t overlap in each category, called Association Language Features by its Category (ALFC). Experimental results show that ALFC distinguish well in Major Depressive Disorder and have better performance. We also compare the approach with baseline and mutual information that use single words alone or correlation measure.

Keywords: Association language features, Emotion Classification, Overlap-Category Feature, Nature Language Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1342 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics

Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo

Abstract:

A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.

Keywords: Behavioural biometric, Face biometric, Neural network, Physical biometric, Signature biometric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
1341 A Copyright Protection Scheme for Color Images using Secret Sharing and Wavelet Transform

Authors: Shang-Lin Hsieh, Lung-Yao Hsu, I-Ju Tsai

Abstract:

This paper proposes a copyright protection scheme for color images using secret sharing and wavelet transform. The scheme contains two phases: the share image generation phase and the watermark retrieval phase. In the generation phase, the proposed scheme first converts the image into the YCbCr color space and creates a special sampling plane from the color space. Next, the scheme extracts the features from the sampling plane using the discrete wavelet transform. Then, the scheme employs the features and the watermark to generate a principal share image. In the retrieval phase, an expanded watermark is first reconstructed using the features of the suspect image and the principal share image. Next, the scheme reduces the additional noise to obtain the recovered watermark, which is then verified against the original watermark to examine the copyright. The experimental results show that the proposed scheme can resist several attacks such as JPEG compression, blurring, sharpening, noise addition, and cropping. The accuracy rates are all higher than 97%.

Keywords: Color image, copyright protection, discrete wavelet transform, secret sharing, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
1340 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce

Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park

Abstract:

Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.

Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
1339 Design of PID Controller for Higher Order Continuous Systems using MPSO based Model Formulation Technique

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes a new algebraic scheme to design a PID controller for higher order linear time invariant continuous systems. Modified PSO (MPSO) based model order formulation techniques have applied to obtain the effective formulated second order system. A controller is tuned to meet the desired performance specification by using pole-zero cancellation method. Proposed PID controller is attached with both higher order system and formulated second order system. The closed loop response is observed for stabilization process and compared with general PSO based formulated second order system. The proposed method is illustrated through numerical example from literature.

Keywords: Higher order systems, model order formulation, modified particle swarm optimization, PID controller, pole-zero cancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5028
1338 A Hybrid Feature Selection by Resampling, Chi squared and Consistency Evaluation Techniques

Authors: Amir-Massoud Bidgoli, Mehdi Naseri Parsa

Abstract:

In this paper a combined feature selection method is proposed which takes advantages of sample domain filtering, resampling and feature subset evaluation methods to reduce dimensions of huge datasets and select reliable features. This method utilizes both feature space and sample domain to improve the process of feature selection and uses a combination of Chi squared with Consistency attribute evaluation methods to seek reliable features. This method consists of two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure to find the optimal feature space by applying Chi squared, Consistency subset evaluation methods and genetic search. Experiments on various sized datasets from UCI Repository of Machine Learning databases show that the performance of five classifiers (Naïve Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) improves simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods.

Keywords: feature selection, resampling, reliable features, Consistency Subset Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582