
 

 

 
Abstract—Nowadays, e-commerce shopping websites have 

experienced noticeable growth. These websites have gained 
consumers’ trust. After purchasing a product, many consumers share 
comments where opinions are usually embedded about the given 
product. Research on the automatic management of opinions that 
gives suggestions to potential consumers and portrays an image of the 
product to manufactures has been growing recently. After launching 
the product in the market, the reviews generated around it do not 
usually contain helpful information or generic opinions about this 
product (e.g. telephone: great phone...); in the sense that the product 
is still in the launching phase in the market. Within time, the product 
becomes old. Therefore, consumers perceive the advantages/ 
disadvantages about each specific product feature. Therefore, they 
will generate comments that contain their sentiments about these 
features. In this paper, we present an unsupervised method to extract 
different product features hidden in the opinions which influence its 
purchase, and that combines Time Weighting (TW) which depends 
on the time opinions were expressed with Term Frequency-Inverse 
Document Frequency (TF-IDF). We conduct several experiments 
using two different datasets about cell phones and hotels. The results 
show the effectiveness of our automatic feature extraction, as well as 
its domain independent characteristic. 
 

Keywords—Opinion mining, product feature extraction, 
sentiment analysis, SentiWordNet.  

I. INTRODUCTION 

ODAY, the web provides a good platform to retrieve 
information about products and their advantages/ 

disadvantages. After purchasing a product, many people share 
their satisfactions and critics about it. These comments often 
contain their opinions which become a new source of 
information for potential consumers and manufacturers. These 
opinions may, also, be analyzed for potential consumers to 
find out the advantages and disadvantages of a product of their 
interest. The large number of opinions is very difficult to 
analyse manually. This is why automatic methods were used 
to alleviate humans from this process. The main target is to 
solve this problem by mining these product opinions. 

The product opinion mining can be performed at one of the 
three levels: Whole opinion level [1], sentence level [2], or 
feature level [3]. For the opinion level, the entire opinion 
generates a single value of polarity (positive, neutral or 
negative), which is not accurate, because an opinion can 
contain multiple sentences with various polarities and a 
general classification of the opinion is not suitable. But in the 
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sentence level, polarities will be generated for each sentence. 
Feature level can be better in extracting an exact or useful 
summary about a product which can help the potential 
customers understand the product more clearly and compare it 
with competitors’ products. 

The extraction of product features is a fundamental step in 
product opinion mining at feature level. The polarity of each 
opinion within different features according to that has a wide 
variety of applications such as trust reputation system [4] 
product recommendation [5] and summary generation [6], [7]. 
In recent years, various product feature extraction approaches 
have been proposed by many researchers [3], [8]-[13]. Some 
research works [8]–[11] identified these features using 
relations dependencies approaches that are based on relations 
among terms appeared in reviews. Some of the problems of 
using these approaches are because of the complexity of 
languages that make the identification of all relations 
dependencies difficult to catch (that poses a problem of using 
these techniques). Therefore, after dependency relation 
analyses, some additional steps are used in order to extract 
these product features. Other approaches used or created an 
ontology to identify these features written in reviews [4], 
[14]–[17]. The creation of ontologies is a difficult step and its 
use needs a specific ontology for the domain we’re working 
on to extract these features. For this reason, it is necessary that 
the right ontology be available if we want to make an effective 
product features extraction. 

 Other approaches based on machine learning mainly rely 
on terms occurrence frequencies that belong to opinions which 
become product features [3]. Some works based on this 
approach use the reviews from other domains to extract 
features for a specific one [3], [12], [13]. Some limitations of 
these works are the need to use the reviews from other 
domains to extract the features for a specific field based on the 
weight or the frequency of each feature for this specific 
domain compared with the other domains. Also, the choice of 
these comparative domains has an important role. e.g., if we 
use the dataset’s ‘tablet’ as a comparative domain vis-à-vis the 
‘computer’, the accuracy to extract the features of 'computer' 
will decrease; because there are many common features 
between both datasets. With regard to that, in most research 
works [18]–[20], only nouns and noun phrases are extracted as 
the feature word candidates.  

In this paper, we present a method that extracts candidate 
product features from opinions. The basic idea of our method 
is to generate automatically a list of nouns and noun phrases 
that contains those candidate features. Then, the potential 
product features will be identified using an unsupervised 
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method based on a combination of TF-IDF that identify the 
frequent candidate features and TW that depends on time 
when the opinion is expressed which gives more weight to 
new opinions expressed. The main idea behind our approach is 
that usually, right after the launching of the product in to the 
market, consumers who buy it do not really pin down its pros 
and cons with respect to its features; however, they 
automatically generate opinions that are more or less generic 
because the product is new to them. Despite their generic 
opinions, consumers form a strong opinion that contains their 
true feelings about the product and its features as time goes 
by. For that, a method that combines both TW and TFIDF has 
been proposed, giving the importance to the candidate features 
expressed in the recent opinions to extract the product 
features. Our method is more generic than TF-IDF because the 
value of TM is between 0 and 1. Therefore, the features 
extraction results are better or close to using TF-IDF only. 

The remainder of the paper is organized as follows: Section 
II narrates the related work to extract product features. Section 
III presents our proposed system. An experimental study is 
presented in Section IV, as well as the analysis and the 
discussion of the results. Finally, conclusions and suggestions 
for further research are given in Section V.  

II. RELATED WORKS 

Previous studies have explored many different methods to 
extract the product features. Some works are based on 
dependency relation to extract these features. A phrase 
dependency tree has been constructed from results of 
chunking and dependency parsing, and based on this tree the 
candidate product features and opinion expressions have also 
been extracted [8]. It has been noticed that [11] used three 
types of dependency relations between each word in a 
sentence in order to identify product features or general 
opinion sentences in reviews. They assigned a product feature 
to each of the opinion sentences based on the frequently 
associated words that appear in the selected types of 
dependency relations. Besides, a semantic based approach has 
been proposed [10] that uses typed dependency relations to 
identify the product features based on the opinion word 
associated with them using different dependencies. Then, an 
algorithm is proposed to replace the pronoun present in the 
review sentence with the appropriate product feature. Another 
method [9] based on analysis of dependency relations that 
identifies the dependency relations between noun/noun 
phrases and sentiment terms has been proposed. Some filtering 
rules are applied to generate product features, then the implicit 
features are inferred based on the results of the NodeRank 
algorithm to finalize the product feature set.  

Other works that use or create an ontology in order to 
extract the product features included in the opinions can be 
found; an ontology terminology to extract features about 
movie reviews has been used by Lili and Chunping [16]. 
Starting with preprocessed reviews, they identified related 
sentences which contain the ontology terminologies. From 
those sentences, they easily extracted the features. Also, 
Moreno et al. [15] used general domain ontology to extract 

features included in the opinions expressed about movies by 
users. Liu et al. [17] built automatically a domain-specific 
affective ontology by processing the online reviews to identify 
product features and corresponding opinions. First, they 
collected feature words and affective words as seed sets. Then, 
they extracted pairs of feature words and affective words from 
reviews by POS patterns including their sentiment polarity. 
Finally, they clustered the feature words and formed the 
affective ontology. Also, a product ontology about ‘camera’ 
and an online learning algorithm called Hierarchical Learning 
with Sentiment Ontology Tree (HL-SOT) has been manually 
constructed that has been developed to improve the 
effectiveness of product review classification [14]. It has been 
proposed [4] that a technique based on idiomatic ontology 
identifies product features and sub-features. First, the system 
used POS tagging to extract features and sub-features. Then, 
they compared these features and sub-features from the review 
with the already existing ones in the ontology database. If not 
exist, the tagging process will end and the feature text will be 
added to a seed list that a supervisor verifies in order to either 
add it as a feature in the ontology data base or not. 

Other studies are based on machine learning to extract these 
features; Hu and Liu [19] proposed an approach based on 
association mining in order to extract product features. The 
main idea of this approach is that people often use the same 
words when they comment on the same product features. Then 
frequent itemsets of nouns in reviews are likely to be product 
features while the infrequent ones are less likely to be product 
features. However, the drawback of using this approach is to 
generate many features which do not actually represent true 
product features like e.g. ‘comment’. A probabilistic approach 
to extract domain specific features has been used by [12]. The 
basic rationale of this approach application is that, features 
which are more specific to a certain field of the product have a 
higher probability of appearing in opinions belonging to this 
product field than the ones appearing in opinions belonging to 
other fields. Based on this observation, they defined the 
characteristic power of a feature for a product field, as the 
probability that an opinion containing that feature belongs to 
the field compared to the probability that the opinion belongs 
to other fields. Kushal and Durga [3] combined both previous 
approaches (association mining [19] and probabilistic [12]) to 
identify these features. Initially, they applied association rule 
mining to extract the most frequent occurring features in the 
user reviews for a product. Then, a probabilistic approach has 
been used in order to extract the potential features based on 
these weights in a specific field compared to generic domain. 
Moreover, it has been proposed [21] that OPINE (an 
unsupervised information extraction system) works with 
acquiring frequent candidate nouns by setting a threshold 
frequency. Then, frequent candidates are assessed by Point-
wise Mutual Information (PMI) between a candidate and a 
product class. Changqin and Fuji [13] proposed an 
unsupervised method to extract the product feature using 
comparative domain corpora. The basic idea of this approach 
is to extract domain product features through the evaluation of 
their weights in different related domains. They applied a term 
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After recovering our dataset of opinions, our method 
identifies, first, the nouns composed of one word to determine 
the unigram-itemsets. Then, it generates the candidate features 
that are composed of multiple words (respecting a minimum 
support minsup that represents the frequency of these nouns in 
the dataset of opinions). The detailed steps are described 
below: 
 The first step creates the largest possible candidate 

features list that is composed of multiple words using 
Candidate_Feature_Generation function which will be 
described in subsection 1 (Candidate Feature Generation); 

 The second step relates to count the frequency of these 
features for each opinion , and selects only the 
candidates the candidates who have support (frequency) 
greater than the minimum support (minsup); 

 The third step, Candidate_Feature_Filtering function 
allows to generate the true candidate features composed 
of k-words  that will be described in subsection 2 
(Candidate Feature Filtering); 

 Finally, we will generate all candidate features that 
contains the most frequent nouns composed of one or 
multiple words. 
 

 

Fig. 2 Frequent Candidate Product Feature Extraction 

1) Candidate Feature Generation 

This function (Fig. 3) takes as argument a possible 
candidate features composed of (k-1)-words and returns a 
possible candidate features composed of k-words. For 
example, we have a candidate feature that contains the noun 
composed of one word (Fig. 5) be it {{battery}, {life}, 
{image}, {screen}}. After implementing this function for k=2, 
we obtain a list composed of {battery life}, {life battery}, {life 
image}, {image life}, {battery image} and {image battery}. 
Additionally, we will delete the candidates don't exist in 
opinions to build a new possible candidate features that 
composed of 2-words in order to obtain a list composed of just 
{battery life} (the other combinations of word nouns do not 
exist in opinions). 

 

Fig. 3 Candidate Feature generation 

2) Candidate Feature Filtering 

The main goal of this function is to produce the true 
candidate features composed of (k-1)-words ( ) that do not 
exist in the possible candidate features composed of k-words 
( ) and its support is greater than minsup (in the example 
shown in Fig. 5, the minsup =2). For example, in Fig. 5 we 
have the possible candidate features composed of two words 

 be it {battery life} and composed of one word  be 
it {{battery}, {life}, {screen}, {image}}. After applying this 
function, we will delete {battery} and {life} from  (these 
possible features belong to {battery life}) in order to generate 
a list that composed of {screen} and {image}. 

 

 

Fig. 4 Candidate Feature Filtering 

E. Product Feature Extraction 

The main goal of this part is to extract the potential features 
from the CF List based on our method that combines TW and 
TF-IDF. The objective of our method is to give the importance 
to the last opinion expressed to calculate the weight of each 
candidate feature ( ), for this reason we introduce TW (4) 
that depends on the time when each opinion is expressed. This 
function (TW) is derived from logistic function [28] that has a 
curve like a product life cycle. As we know product features 
that are often shared about a product in opinions, appear from 
the launching phase of product life cycle that is why we 
introduce TW in the combination (1) to extract product 
features. 

 

1) ∈  

2)    ∈  

3)      		 	 	 		 	  

4)            	 		 ; 
5)     

 
6)    	 ∈ 	 	  

7) 		 	 	 	 	 				 	 ∉ 	  

8)        		 . ; 

9)     

10) 							 		 ∈ |		 . 	; 
11) end 
12)  

1) 
2) . , . , … , . , .  

3) 	 	 , 	  

4) 	 . 	 . , … , .
	 . , . 	 . ; 

 

5) 	 	 ∊ 	  

6)       	 ∉ 	  

7)             	 	 	 ; // delete this candidate if does not 
exist in all opinions 

8) end 

9)

1) ; // dataset of reviews 
2) ; 

																					 // candidate feature composed of one noun 

 
3) 2;	 ; 	 	 	 
4)    				 _ _ ;	 

                  // New candidates (Fig. 3) 

5)                	 	 ∈ 	 
6)           							 	 , ; 

                    // Candidates contained in   

7)        								 	 	 	 ∈ 	   

8)                       . ; 
9)    												  

10) 								  

11) 			 	 ∈ |	 .  

12) 	 			 _ _ , ;  
       // (Fig. 4) 
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14) 	 ⋃ ⋃…⋃ ⋃  
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IV. EXPERIMENTS AND RESULTS 

Our system has been implemented in Java and it has 
generated product features that are generally common among 
all products of the same type. The procedure to extract these 
features is as follows: After collecting opinions, the first step 
is to select only the opinions written in English using 
langdetect [23]. After that, we clean these opinions from 
different syntactic features that may not be useful in next 
steps. Then, we detect and correct the spelling errors [24]. 
After, POS tagger tags all the words in each opinion to their 
appropriate part of speech tag in order to identify word nouns 
that are important to build a candidate features list. At last, we 
group nouns synonyms and filter these opinions from brand 
names. The next step is to extract candidate features using the 
method indicated in Fig. 2 to obtain a list of these candidates 
in order to calculate the weight for each candidate and select 
the most important candidates using our approach TW-TFIDF 
that combines TW and TFIDF. 

A. Data collection 

We have conducted experiments using two data sets. The 
first is about cell phones. We use six products. The customers’ 
opinions for these products were collected from 
gsmarena.com. The details of this dataset are shown in Table 
I. The second dataset is about hotels. We used reviews from 
four hotels that were collected from TripAdvisor.com, and the 
details of this dataset are shown in Table II.  

B. Metrics 

The performances of our proposed approach are measured 
using the standard evaluation measures of  ( ), 

 ( ) and  ( ). Specifically, precision is the 
fraction of extracted features that are correct; recall is the 
fraction of correct features that are actually extracted among 
all correct features; and F-measure	 2 ⁄ . 
Higher values of	 , , and  indicate better performance. For 
example, our system has recognized 50 candidates as product 
features. Only 30 have been predicted correctly ant total 
number of manual product features is 60. So, the precision and 
recall will be calculated as: 	 	  . 

C. Tuning Parameters 

The parameters of tuning used in our approach are: 
minimum support (minsup), adjustment value k (4) and 
threshold value  (6). The minsup is used in the candidate 
feature extraction step to identify the candidate features for 
each or all products. So, we changed the value of this 
parameter in order to generate a list that contains all candidate 

features. However, the value of k depends on the interval of 
crawling opinions (since product launch in market or not). 
Therefore, we changed its value to obtain good results. 
Finally, the threshold value  selects product features from the 
list that contains their candidates based on the average weight 
(selects the candidates that have a great average).  

 
TABLE I 

DATA DESCRIPTION OF CELL PHONE REVIEWS 

Product 
(P) 

Product 
Description 

Number 
of 

reviews

Number of 
manually 
extracted 
features 

Average 
of 

words 
Interval of extraction

 
blackberry 

leap 
480 25 49 

From 03 Mar 2015 
to 23 Dec 2015 

 
samsung 
galaxy j7 

882 33 34 
From 09 Apr 2015 

to 22 Dec 2015 

 htc one m9 2058 34 50 
From 22 Jan 2015 to 

15 Dec 2015 

 
sony xperia 

e4g 
897 36 56 

From 24 Feb 2015 to 
11 Dec 2015 

 
samsung 

galaxy s6 edge
2502 37 56 

From 01 Mar 2015 
to 09 Dec 2015 

 
sony xperia 

m4 aqua 
881 32 49 

From 02 Mar 2015 
to 19 Dec 2015 

 
TABLE II 

DATA DESCRIPTION OF HOTEL REVIEWS 

Hotel 
(H) 

Location 
Number 

of reviews

Number of 
manually 
extracted 
features 

Average 
of words 

Interval of 
extraction 

 
San 

Francisco, 
California 

324 32 150 
From 21 nov 2006 

to 7 jan 2009 

 
Barcelona, 
Catalonia 

244 27 218 
From 4 nov 2004 to 

5 jan 2009 

 Hong Kong 249 28 190 
From 5 jun 2005 to 

7 jan 2009 

 New York 263 46 200 
From 16 feb 2006 

to 6 jan 2009 

D. Data Analysis and Results 

Table III gives the experimental results of extracting 
product features. The performances are measured using the 
standard evaluation measures of precision (p), recall (r) and F-
score (f) that we previously mentioned. The experiments have 
indicated that our approach using  gives the values 
that are better than using TF-IDF to extract these features. 
Also, Table IV shows the experiment results to extract 
features from hotel reviews which indicates that our approach 
is independent of the domain. The parameter value k is 
important to obtain good results. e.g. we changed its value 
about products ,  and  to obtain f-measure = 0.60 (  = 
day). In addition, the large number of opinions is important to 
better extract these features. Good results are obtained from 
cell phone reviews where =day because these opinions are 
shared on a daily basis and our dataset contains the opinions 
from the product once launched.  

Table IV shows good results of hotel features extraction 
that indicate that our method gives good results compared to 
TFIDF, but the few numbers of opinions (1080 opinions) 
influenced on this extraction.  
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TABLE III 
COMPARISON OF PRECISION, RECALL AND F-SCORE VALUE RESULT OF OUR 

APPROACH TW-TFIDF WITH TF-IDF TO EXTRACT PRODUCT FEATURES FROM 

CELL PHONE REVIEWS 

 
TF-IDF 

TW-TFIDF 

    

P             

 0.56 0.52 0.54 0.54 0.52 0.53 0.54 0.52 0.53 0.54 0.52 0.53 

 0.46 0.57 0.51 0.54 0.66 0.60 0.50 0.61 0.55 0.56 0.51 0.53 

 0.39 0.50 0.44 0.57 0.64 0.60 0.59 0.55 0.57 0.47 0.53 0.50 

 0.47 0.53 0.50 0.51 0.58 0.54 0.54 0.54 0.54 0.46 0.53 0.49 

 0.40 0.43 0.43 0.55 0.55 0.55 0.50 0.57 0.53 0.53 0.54 0.53 

 0.45 0.59 0.51 0.55 0.66 0.60 0.56 0.59 0.57 0.50 0.62 0.55 

Avg. 0.45 0.52 0.48 0.54 0.60 0.57 0.54 0.52 0.53 0.51 0.54 0.52 
All 

product 
0.42 0.50 0.46 0.54 0.61 0.57 0.50 0.50 0.50 0.49 0.54 0.51 

 
TABLE IV 

COMPARISON OF PRECISION, RECALL AND F-SCORE VALUE RESULT OF OUR 

APPROACH TW-TFIDF THAT USING TIME WITH TF-IDF TO EXTRACT 

PRODUCT FEATURES FROM HOTEL REVIEWS 

 
TF-IDF 

TW-TFIDF 

  6	   

H             

 0.41 0.55 0.47 0.43 0.57 0.49 0.44 0.57 0.50 0.42 0.57 0.51

 0.41 0.41 0.41 0.47 0.52 0.49 0.44 0.55 0.49 0.37 0.63 0.47

 0.36 0.46 0.40 0.46 0.50 0.48 0.42 0.46 0.44 0.40 0.46 0.43

 0.36 0.37 0.36 0.54 0.54 0.54 0.54 0.53 0.53 0.54 0.53 0.53

Avg. 0.38 0.45 0.41 0.47 0.53 0.50 0.46 0.52 0.49 0.43 0.54 0.48
All 

hotel 
0.38 0.45 0.41 0.42 0.48 0.45 0.43 0.48 0.45 0.45 0.48 0.46

V. CONCLUSION AND FUTURE WORK 

In this paper, a product features list is automatically 
constructed based on the opinions about comparative products 
(same type). We proposed an unsupervised method that 
depends on the time when the opinions are expressed to select 
the potential features from this list without the need of 
opinions from other domains. The results obtained are 
justified: first, to introduce the time axis which is important to 
extract these features. Second, the approach proposed does not 
refer to any information of the domain. So, it is a domain 
independent. 

In the future work, we aim at improving our method in 
order to extract implicit product features and generate this 
method for other languages. 
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