Search results for: particle swarm optimal control.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5595

Search results for: particle swarm optimal control.

5595 CSTR Control by Using Model Reference Adaptive Control and PSO

Authors: Neha Khanduja

Abstract:

This paper presents a comparative analysis of continuously stirred tank reactor (CSTR) control based on adaptive control and optimal tuning of PID control based on particle swarm optimization. In the design of adaptive control, Model reference adaptive control (MRAC) scheme is used, in which the adaptation law have been developed by MIT rule & Lyapunov’s rule. In PSO control parameters of PID controller is tuned by using the concept of particle swarm optimization to get optimized operating point for minimum integral square error (ISE) condition. The results show the adjustment of PID parameters converting into the optimal operating point and the good control response can be obtained by the PSO technique.

Keywords: Model reference adaptive control (MRAC), optimal control, particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
5594 Optimized Algorithm for Particle Swarm Optimization

Authors: Fuzhang Zhao

Abstract:

Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.

Keywords: Diversification search, intensification search, optimal weighting, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
5593 Canonical PSO based Nanorobot Control for Blood Vessel Repair

Authors: Pinfa Boonrong, Boonserm Kaewkamnerdpong

Abstract:

As nanotechnology advances, the use of nanotechnology for medical purposes in the field of nanomedicine seems more promising; the rise of nanorobots for medical diagnostics and treatments could be arriving in the near future. This study proposes a swarm intelligence based control mechanism for swarm nanorobots that operate as artificial platelets to search for wounds. The canonical particle swarm optimization algorithm is employed in this study. A simulation in the circulatory system is constructed and used for demonstrating the movement of nanorobots with essential characteristics to examine the performance of proposed control mechanism. The effects of three nanorobot capabilities including their perception range, maximum velocity and respond time are investigated. The results show that canonical particle swarm optimization can be used to control the early version nanorobots with simple behaviors and actions.

Keywords: Artificial platelets, canonical particle swarm optimization, nanomedicine, nanorobot, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687
5592 Particle Swarm Optimization with Reduction for Global Optimization Problems

Authors: Michiharu Maeda, Shinya Tsuda

Abstract:

This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization problems. When an objective function has a lot of local minimums complicatedly, the particle may fall into a local minimum. For avoiding the local minimum, a number of particles are initially prepared and their positions are updated by particle swarm optimization. Particles sequentially reduce to reach a predetermined number of them grounded in evaluation value and particle swarm optimization continues until the termination condition is met. In order to show the effectiveness of the proposed algorithm, we examine the minimum by using test functions compared to existing algorithms. Furthermore the influence of best value on the initial number of particles for our algorithm is discussed.

Keywords: Particle swarm optimization, Global optimization, Metaheuristics, Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
5591 Phase Control Array Synthesis Using Constrained Accelerated Particle Swarm Optimization

Authors: Mohammad Taha, Dia abu al Nadi

Abstract:

In this paper, the phase control antenna array synthesis is presented. The problem is formulated as a constrained optimization problem that imposes nulls with prescribed level while maintaining the sidelobe at a prescribed level. For efficient use of the algorithm memory, compared to the well known Particle Swarm Optimization (PSO), the Accelerated Particle Swarm Optimization (APSO) is used to estimate the phase parameters of the synthesized array. The objective function is formed using a main objective and set of constraints with penalty factors that measure the violation of each feasible solution in the search space to each constraint. In this case the obtained feasible solution is guaranteed to satisfy all the constraints. Simulation results have shown significant performance increases and a decreased randomness in the parameter search space compared to a single objective conventional particle swarm optimization.

Keywords: Array synthesis, Sidelobe level control, Constrainedoptimization, Accelerated Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
5590 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization

Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao

Abstract:

Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.

Keywords: Minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
5589 Induction Motor Design with Limited Harmonic Currents Using Particle Swarm Optimization

Authors: C. Thanga Raj, S. P. Srivastava, Pramod Agarwal

Abstract:

This paper presents an optimal design of poly-phase induction motor using Quadratic Interpolation based Particle Swarm Optimization (QI-PSO). The optimization algorithm considers the efficiency, starting torque and temperature rise as objective function (which are considered separately) and ten performance related items including harmonic current as constraints. The QI-PSO algorithm was implemented on a test motor and the results are compared with the Simulated Annealing (SA) technique, Standard Particle Swarm Optimization (SPSO), and normal design. Some benchmark problems are used for validating QI-PSO. From the test results QI-PSO gave better results and more suitable to motor-s design optimization. Cµ code is used for implementing entire algorithms.

Keywords: Design, harmonics, induction motor, particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
5588 Exponential Particle Swarm Optimization Approach for Improving Data Clustering

Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi

Abstract:

In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.

Keywords: Particle swarm optimization, data clustering, exponential PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
5587 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption

Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu

Abstract:

In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.

Keywords: Comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
5586 Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm

Authors: A. A. Khan, M. Naeem, S. Bashir, S. I. Shah

Abstract:

In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.

Keywords: Multi Antenna (MA), Multi-input Multi-output(MIMO), Particle Swarm Optimization (PSO), ML detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
5585 A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor

Authors: Mehdi Nasri, Hossein Nezamabadi-pour, Malihe Maghfoori

Abstract:

This Paper presents a particle swarm optimization (PSO) method for determining the optimal proportional-integral-derivative (PID) controller parameters, for speed control of a linear brushless DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The brushless DC motor is modelled in Simulink and the PSO algorithm is implemented in MATLAB. Comparing with Genetic Algorithm (GA) and Linear quadratic regulator (LQR) method, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of a linear brushless DC motor.

Keywords: Brushless DC motor, Particle swarm optimization, PID Controller, Optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4967
5584 Application of Particle Swarm Optimization Technique for an Optical Fiber Alignment System

Authors: Marc Landry, Azeddine Kaddouri, Yassine Bouslimani, Mohsen Ghribi

Abstract:

In this paper, a new alignment method based on the particle swarm optimization (PSO) technique is presented. The PSO algorithm is used for locating the optimal coupling position with the highest optical power with three-degrees of freedom alignment. This algorithm gives an interesting results without a need to go thru the complex mathematical modeling of the alignment system. The proposed algorithm is validated considering practical tests considering the alignment of two Single Mode Fibers (SMF) and the alignment of SMF and PCF fibers.

Keywords: Particle-swarm optimization, optical fiber, automatic alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
5583 Particle Swarm Optimization Based PID Power System Stabilizer for a Synchronous Machine

Authors: Gowrishankar Kasilingam

Abstract:

This paper proposes a swarm intelligence method that yields optimal Proportional-Integral-Derivative (PID) Controller parameters of a power system stabilizer (PSS) in a single machine infinite bus system. The proposed method utilizes the Particle Swarm Optimization (PSO) algorithm approach to generate the optimal tuning parameters. The paper is modeled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under several load conditions. At the same operating point, the PID-PSS parameters are also tuned by Ziegler-Nichols method. The dynamic performance of proposed controller is compared with the conventional Ziegler-Nichols method of PID tuning controller to demonstrate its advantage. The analysis reveals the effectiveness of the proposed PSO based PID controller.

Keywords: Particle Swarm Optimization, PID Controller, Power System Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040
5582 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: Linear quadratic regulator, LQR controller, optimal control, particle swarm optimization, PSO, two-rotor aero-dynamical system, TRAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
5581 Linear Phase High Pass FIR Filter Design using Improved Particle Swarm Optimization

Authors: Sangeeta Mondal, Vasundhara, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper presents an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Improved Particle Swarm Optimization (IPSO). In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. An iterative method is introduced to find the optimal solution of FIR filter design problem. Evolutionary algorithms like real code genetic algorithm (RGA), particle swarm optimization (PSO), improved particle swarm optimization (IPSO) have been used in this work for the design of linear phase high pass FIR filter. IPSO is an improved PSO that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. A comparison of simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques for the solution of the multimodal, nondifferentiable, highly non-linear, and constrained FIR filter design problems.

Keywords: FIR Filter, IPSO, GA, PSO, Parks and McClellan Algorithm, Evolutionary Optimization, High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099
5580 A Novel Optimal Setting for Directional over Current Relay Coordination using Particle Swarm Optimization

Authors: D. Vijayakumar, R. K. Nema

Abstract:

Over Current Relays (OCRs) and Directional Over Current Relays (DOCRs) are widely used for the radial protection and ring sub transmission protection systems and for distribution systems. All previous work formulates the DOCR coordination problem either as a Non-Linear Programming (NLP) for TDS and Ip or as a Linear Programming (LP) for TDS using recently a social behavior (Particle Swarm Optimization techniques) introduced to the work. In this paper, a Modified Particle Swarm Optimization (MPSO) technique is discussed for the optimal settings of DOCRs in power systems as a Non-Linear Programming problem for finding Ip values of the relays and for finding the TDS setting as a linear programming problem. The calculation of the Time Dial Setting (TDS) and the pickup current (Ip) setting of the relays is the core of the coordination study. PSO technique is considered as realistic and powerful solution schemes to obtain the global or quasi global optimum in optimization problem.

Keywords: Directional over current relays, Optimization techniques, Particle swarm optimization, Power system protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
5579 Comparing the Performance of the Particle Swarm Optimization and the Genetic Algorithm on the Geometry Design of Longitudinal Fin

Authors: Hassan Azarkish, Said Farahat, S.Masoud H. Sarvari

Abstract:

In the present work, the performance of the particle swarm optimization and the genetic algorithm compared as a typical geometry design problem. The design maximizes the heat transfer rate from a given fin volume. The analysis presumes that a linear temperature distribution along the fin. The fin profile generated using the B-spline curves and controlled by the change of control point coordinates. An inverse method applied to find the appropriate fin geometry yield the linear temperature distribution along the fin corresponds to optimum design. The numbers of the populations, the count of iterations and time to convergence measure efficiency. Results show that the particle swarm optimization is most efficient for geometry optimization.

Keywords: Genetic Algorithm, Geometry Optimization, longitudinal Fin, Particle Swarm Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
5578 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization

Authors: Lana Dalawr Jalal

Abstract:

This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex threedimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.

Keywords: Obstacle Avoidance, Particle Swarm Optimization, Three-Dimensional Path Planning Unmanned Aerial Vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
5577 Particle Swarm Optimization for Design of Water Distribution Systems

Authors: A. Vasan

Abstract:

Particle swarm optimization (PSO) technique is applied to design the water distribution pipeline network. A simulation-optimization model is formulated with the objective of minimizing cost and is applied to a benchmark water distribution system optimization problem. The benchmark problem taken for the application of PSO technique to optimize the pipe size of the water distribution network is New York City water supply system problem. The results from the analysis infer that PSO is a potential alternative optimization technique when compared to other heuristic techniques for optimal sizing of water distribution systems.

Keywords: Water distribution systems, Optimization, Particle swarm optimization, Swarm intelligence, New York water supply system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
5576 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
5575 Optimal Distributed Generator Sizing and Placement by Analytical Method and PSO Algorithm Considering Optimal Reactive Power Dispatch

Authors: Kyaw Myo Lin, Pyone Lai Swe, Khine Zin Oo

Abstract:

In this paper, an approach combining analytical method for the distributed generator (DG) sizing and meta-heuristic search for the optimal location of DG has been presented. The optimal size of DG on each bus is estimated by the loss sensitivity factor method while the optimal sites are determined by Particle Swarm Optimization (PSO) based optimal reactive power dispatch for minimizing active power loss. To confirm the proposed approach, it has been tested on IEEE-30 bus test system. The adjustments of operating constraints and voltage profile improvements have also been observed. The obtained results show that the allocation of DGs results in a significant loss reduction with good voltage profiles and the combined approach is competent in keeping the system voltages within the acceptable limits.

Keywords: Analytical approach, distributed generations, optimal size, optimal location, optimal reactive power dispatch, particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
5574 Improvement of Gregory's formula using Particle Swarm Optimization

Authors: N. Khelil. L. Djerou , A. Zerarka, M. Batouche

Abstract:

Consider the Gregory integration (G) formula with end corrections where h Δ is the forward difference operator with step size h. In this study we prove that can be optimized by minimizing some of the coefficient k a in the remainder term by particle swarm optimization. Experimental tests prove that can be rendered a powerful formula for library use.

Keywords: Numerical integration, Gregory Formula, Particle Swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
5573 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization

Authors: Martha C. Orazulume, Jibril D. Jiya

Abstract:

Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.

Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
5572 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting

Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun

Abstract:

In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution.

Keywords: Multi-objective optimization, random drift particle swarm optimization, crowding distance, Pareto optimal solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
5571 Design of a Robust Controller for AGC with Combined Intelligence Techniques

Authors: R. N. Patel, S. K. Sinha, R. Prasad

Abstract:

In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.

Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
5570 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller. 

Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
5569 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator

Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang

Abstract:

This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.

Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
5568 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization

Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal

Abstract:

This paper describes optimal thinning of an Elliptical  Cylindrical Array (ECA) of uniformly excited isotropic antennas  which can generate directive beam with minimum relative Side Lobe  Level (SLL). The Particle Swarm Optimization (PSO) method, which  represents a new approach for optimization problems in  electromagnetic, is used in the optimization process. The PSO is used  to determine the optimal set of ‘ON-OFF’ elements that provides a  radiation pattern with maximum SLL reduction. Optimization is done  without prefixing the value of First Null Beam Width (FNBW). The  variation of SLL with element spacing of thinned array is also  reported. Simulation results show that the number of array elements  can be reduced by more than 50% of the total number of elements in  the array with a simultaneous reduction in SLL to less than -27dB.

 

Keywords: Thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671
5567 Optimal Planning of Ground Grid Based on Particle Swam Algorithm

Authors: Chun-Yao Lee, Yi-Xing Shen

Abstract:

This paper presents an application of particle swarm optimization (PSO) to the grounding grid planning which compares to the application of genetic algorithm (GA). Firstly, based on IEEE Std.80, the cost function of the grounding grid and the constraints of ground potential rise, step voltage and touch voltage are constructed for formulating the optimization problem of grounding grid planning. Secondly, GA and PSO algorithms for obtaining optimal solution of grounding grid are developed. Finally, a case of grounding grid planning is shown the superiority and availability of the PSO algorithm and proposal planning results of grounding grid in cost and computational time.

Keywords: Genetic algorithm, particle swarm optimization, grounding grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
5566 Generator Capability Curve Constraint for PSO Based Optimal Power Flow

Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama

Abstract:

An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.

Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575