A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor
Authors: Mehdi Nasri, Hossein Nezamabadi-pour, Malihe Maghfoori
Abstract:
This Paper presents a particle swarm optimization (PSO) method for determining the optimal proportional-integral-derivative (PID) controller parameters, for speed control of a linear brushless DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The brushless DC motor is modelled in Simulink and the PSO algorithm is implemented in MATLAB. Comparing with Genetic Algorithm (GA) and Linear quadratic regulator (LQR) method, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of a linear brushless DC motor.
Keywords: Brushless DC motor, Particle swarm optimization, PID Controller, Optimal control.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1076088
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4961References:
[1] V. Tipsuwanporn, W. Piyarat and C. Tarasantisuk, ''Identification and control of brushless DC motors using on-line trained artificial neural networks,'' in Proc. Power Conversion Conf., pp. 1290-1294, Apr. 2002.
[2] X.Li Q.Zhang and H.Xiao, ''The design of brushless DC motor servo system based on wavelet ANN, ''in Proc. Int. Conf. Machine Learning and Cybernetics, pp. 929-933, 2004.
[3] N. Hemati, J. S. Thorp, and M. C. Leu, ''Robust nonlinear control of Brushless dc motors for direct-drive robotic applications,'' IEEE Trans. Ind. Electron., vol. 37, pp. 460-468, Dec 1990.
[4] P. M. Pelczewski and U. H. Kunz, ''The optimal control of a constrained drive system with brushless dc motor,'' IEEE Trans. Ind. Electron., vol. 37, pp. 342-348, Oct. 1990.
[5] F. J. Lin, K. K. Shyu, and Y. S. Lin, ''Variable structure adaptive control for PM synchronous servo motor drive,'' IEE Proc. IEE B: Elect. Power Applicat., vol. 146, pp. 173-185, Mar. 1999.
[6] E. Cerruto, A. Consoli, A. Raciti, and A. Testa, ''A robust adaptive controller for PM motor drives in robotic applications,'' IEEE Trans. Power Electron., vol. 10, pp. 62-71, Jan. 1995.
[7] C.-L. Lin, and H.-Y. Jan, ''Evolutionarily multiobjective PID control for linear brushless DC motor, ''in Proc. IEEE Int. Conf .Industrial Elect. Society, Nov. 2002, pp.39-45.
[8] K. Ang, G. Chong, and Y. Li, ''PID control system analysis, design, and technology,'' IEEE Trans.Control System Technology, vol. 13, pp. 559-576, July 2005.
[9] G. Yu, and R. Hwang, ''Optimal PID speed control of brush less DC motors using LQR approach,'' in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, 2004, pp. 473-478.
[10] C. L. Lin, and H. Y. Jan, and N. C. Shieh, ''GA-based multiobjective PID control for a linear brushless DC motor,'' IEEE/ASME Trans. Mechatronics , vol.8, No. 1, pp. 56-65, 2003.
[11] D. B. Fogel, Evolutionary Computation toward a New Philosophy of Machine Intelligence: New York: IEEE, 1995.
[12] R. C. Eberhart and Y. Shi, ''Comparison between genetic algorithms and particle swarm optimization,'' in Proc. IEEE Int. Conf. Evol. Comput., Anchorage, AK, May 1998, pp. 611-616.
[13] Z.-L. Gaing, ''A particle swarm optimization approach for optimum design of PID controller in AVR system,'' IEEE Trans. Energy Conversion, vol. 19, pp. 384-391, June 2004.
[14] J. Kennedy and R. Eberhart, ''Particle swarm optimization,'' in Proc. IEEE Int. Conf. Neural Networks, vol. IV, Perth, Australia, 1995, pp. 1942-1948.
[15] M. A. Abido, ''Optimal design of power-system stabilizers using particle swarm optimization,'' IEEE Trans. Energy Conversion, vol. 17, pp.406-413, Sep. 2002.
[16] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, ''A particle swarm optimization for reactive power and voltage control considering voltage security assessment,'' IEEE Trans. on Power Systems, Vol. 15, No. 4, Nov. 2000, pp. 1232 - 1239.
[17] Allan R. Hambley, Electrical Engineering: Principles and Application, Prentice Hall, New Jersey 1997.
[18] Chee-Mun Ong, Dynamic Simulation of Electric Machinery, Prentice Hall, New Jersey, 1998.
[19] R. A. Krohling and J. P. Rey, ''Design of optimal disturbance rejection PID controllers using genetic algorithm,'' IEEE Trans. Evol. Comput., vol. 5, pp. 78-82, Feb. 2001.
[20] Y. Mitsukura, T. Yamamoto, and M. Kaneda, ''A design of self-tuning PID controllers using a genetic algorithm,'' in Proc. Amer. Contr. Conf., San Diego, CA, June 1999, pp. 1361-1365.
[21] R. A. Krohling, H. Jaschek, and J. P. Rey, ''Designing PI/PID controller for a motion control system based on genetic algorithm,'' in Proc. 12th IEEE Int. Symp. Intell. Contr., Istanbul, Turkey, July 1997, pp. 125-130.