Search results for: partially prescribed spectral data
7893 The Direct Updating of Damping and Gyroscopic Matrices using Incomplete Complex Test Data
Authors: Jiashang Jiang, Yongxin Yuan
Abstract:
In this paper we develop an efficient numerical method for the finite-element model updating of damped gyroscopic systems based on incomplete complex modal measured data. It is assumed that the analytical mass and stiffness matrices are correct and only the damping and gyroscopic matrices need to be updated. By solving a constrained optimization problem, the optimal corrected symmetric damping matrix and skew-symmetric gyroscopic matrix complied with the required eigenvalue equation are found under a weighted Frobenius norm sense.
Keywords: Model updating, damped gyroscopic system, partially prescribed spectral information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17877892 The Ratios between the Spectral Norm, the Numerical Radius and the Spectral Radius
Authors: Kui Du
Abstract:
Recently, Uhlig [Numer. Algorithms, 52(3):335-353, 2009] proposed open questions about the ratios between the spectral norm, the numerical radius and the spectral radius of a square matrix. In this note, we provide some observations to answer these questions.
Keywords: Spectral norm, Numerical radius, Spectral radius, Ratios
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18267891 Enhancement of m-FISH Images using Spectral Unmixing
Authors: Martin De Biasio, Raimund Leitner, Franz G. Wuertz, Sergey Verzakov, Pierre J. Elbischger
Abstract:
Breast carcinoma is the most common form of cancer in women. Multicolour fluorescent in-situ hybridisation (m-FISH) is a common method for staging breast carcinoma. The interpretation of m-FISH images is complicated due to two effects: (i) Spectral overlap in the emission spectra of fluorochrome marked DNA probes and (ii) tissue autofluorescence. In this paper hyper-spectral images of m-FISH samples are used and spectral unmixing is applied to produce false colour images with higher contrast and better information content than standard RGB images. The spectral unmixing is realised by combinations of: Orthogonal Projection Analysis (OPA), Alterating Least Squares (ALS), Simple-to-use Interactive Self-Modeling Mixture Analysis (SIMPLISMA) and VARIMAX. These are applied on the data to reduce tissue autofluorescence and resolve the spectral overlap in the emission spectra. The results show that spectral unmixing methods reduce the intensity caused by tissue autofluorescence by up to 78% and enhance image contrast by algorithmically reducing the overlap of the emission spectra.Keywords: breast carcinoma, hyperspectral imaging, m-FISH, spectral unmixing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17717890 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery
Authors: Yongquan Zhao, Bo Huang
Abstract:
Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.Keywords: Hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12357889 Fourier Spectral Method for Analytic Continuation
Authors: Zhenyu Zhao, Lei You
Abstract:
The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. Some numerical results are also given to show the efficiency of the method.
Keywords: Analytic continuation, ill-posed problem, regularization method Fourier spectral method, the discrepancy principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14987888 New Approach to Spectral Analysis of High Bit Rate PCM Signals
Authors: J. P. Dubois
Abstract:
Pulse code modulation is a widespread technique in digital communication with significant impact on existing modern and proposed future communication technologies. Its widespread utilization is due to its simplicity and attractive spectral characteristics. In this paper, we present a new approach to the spectral analysis of PCM signals using Riemann-Stieltjes integrals, which is very accurate for high bit rates. This approach can serve as a model for similar spectral analysis of other competing modulation schemes.Keywords: Coding, discrete Fourier, power spectral density, pulse code modulation, Riemann-Stieltjes integrals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15927887 Solving Partially Monotone Problems with Neural Networks
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. Here we consider partially monotone problems, where the target variable depends monotonically on some of the predictor variables but not all. We propose an approach to build partially monotone models based on the convolution of monotone neural networks and kernel functions. The results from simulations and a real case study on house pricing show that our approach has significantly better performance than partially monotone linear models. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: Mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16207886 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation
Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu
Abstract:
In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.
Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11617885 Enhanced Spectral Envelope Coding Based On NLMS for G.729.1
Authors: Keunseok Cho, Sangbae Jeong, Hyungwook Chang, Minsoo Hahn
Abstract:
In this paper, a new encoding algorithm of spectral envelope based on NLMS in G.729.1 for VoIP is proposed. In the TDAC part of G.729.1, the spectral envelope and MDCT coefficients extracted in the weighted CELP coding error (lower-band) and the higher-band input signal are encoded. In order to reduce allocation bits for spectral envelope coding, a new quantization algorithm based on NLMS is proposed. Also, reduced bits are used to enhance sound quality. The performance of the proposed algorithm is evaluated by sound quality and bit reduction rates in clean and frame loss conditions.
Keywords: G.729.1, MDCT coefficient, NLMS, spectral envelope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16677884 Outdoor Anomaly Detection with a Spectroscopic Line Detector
Authors: O. J. G. Somsen
Abstract:
One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simple spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various widths we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application.Keywords: Anomaly detection, spectroscopic line imaging, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16467883 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data
Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez
Abstract:
Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.
Keywords: Feature Selection Stability, Spectral data, Data visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15267882 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis
Authors: A.K. Tangirala, S. Babji
Abstract:
In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15347881 An Iterative Updating Method for Damped Gyroscopic Systems
Authors: Yongxin Yuan
Abstract:
The problem of updating damped gyroscopic systems using measured modal data can be mathematically formulated as following two problems. Problem I: Given Ma ∈ Rn×n, Λ = diag{λ1, ··· , λp} ∈ Cp×p, X = [x1, ··· , xp] ∈ Cn×p, where p<n and both Λ and X are closed under complex conjugation in the sense that λ2j = λ¯2j−1 ∈ C, x2j = ¯x2j−1 ∈ Cn for j = 1, ··· , l, and λk ∈ R, xk ∈ Rn for k = 2l + 1, ··· , p, find real-valued symmetric matrices D,K and a real-valued skew-symmetric matrix G (that is, GT = −G) such that MaXΛ2 + (D + G)XΛ + KX = 0. Problem II: Given real-valued symmetric matrices Da, Ka ∈ Rn×n and a real-valued skew-symmetric matrix Ga, find (D, ˆ G, ˆ Kˆ ) ∈ SE such that Dˆ −Da2+Gˆ−Ga2+Kˆ −Ka2 = min(D,G,K)∈SE (D− Da2 + G − Ga2 + K − Ka2), where SE is the solution set of Problem I and · is the Frobenius norm. This paper presents an iterative algorithm to solve Problem I and Problem II. By using the proposed iterative method, a solution of Problem I can be obtained within finite iteration steps in the absence of roundoff errors, and the minimum Frobenius norm solution of Problem I can be obtained by choosing a special kind of initial matrices. Moreover, the optimal approximation solution (D, ˆ G, ˆ Kˆ ) of Problem II can be obtained by finding the minimum Frobenius norm solution of a changed Problem I. A numerical example shows that the introduced iterative algorithm is quite efficient.
Keywords: Model updating, iterative algorithm, gyroscopic system, partially prescribed spectral data, optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14417880 Matrix Valued Difference Equations with Spectral Singularities
Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov
Abstract:
In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.
Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18107879 Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures
Authors: Do Phuc, Nguyen Thi Kim Phung
Abstract:
In this paper, we represent protein structure by using graph. A protein structure database will become a graph database. Each graph is represented by a spectral vector. We use Jacobi rotation algorithm to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph. To measure the similarity between two graphs, we calculate the Euclidean distance between two graph spectral vectors. To cluster the graphs, we use M-tree with the Euclidean distance to cluster spectral vectors. Besides, M-tree can be used for graph searching in graph database. Our proposal method was tested with graph database of 100 graphs representing 100 protein structures downloaded from Protein Data Bank (PDB) and we compare the result with the SCOP hierarchical structure.Keywords: Eigenvalues, m-tree, graph database, protein structure, spectra graph theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16567878 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks
Authors: Danilo López, Johana Hernández, Edwin Rivas
Abstract:
The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.
Keywords: Cognitive radio, neural network, prediction, primary user.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9887877 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.
Keywords: Land cover, mapping, multi-temporal, spectral indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11117876 Enhanced Interference Management Technique for Multi-Cell Multi-Antenna System
Authors: Simon E. Uguru, Victor E. Idigo, Obinna S. Oguejiofor, Naveed Nawaz
Abstract:
As the deployment of the Fifth Generation (5G) mobile communication networks take shape all over the world, achieving spectral efficiency, energy efficiency, and dealing with interference are among the greatest challenges encountered so far. The aim of this study is to mitigate inter-cell interference (ICI) in a multi-cell multi-antenna system while maximizing the spectral efficiency of the system. In this study, a system model was devised that showed a miniature representation of a multi-cell multi-antenna system. Based on this system model, a convex optimization problem was formulated to maximize the spectral efficiency of the system while mitigating the ICI. This optimization problem was solved using CVX, which is a modeling system for constructing and solving discipline convex programs. The solutions to the optimization problem are sub-optimal coordinated beamformers. These coordinated beamformers direct each data to the served user equipments (UEs) in each cell without interference during downlink transmission, thereby maximizing the system-wide spectral efficiency.
Keywords: coordinated beamforming, convex optimization, inter-cell interference, multi-antenna, multi-cell, spectral efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4487875 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of WorldView-2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows with accuracy of 94% effectively and automatically. Furthermore, the new shadow detection index improved road extraction from 82% to 93%.
Keywords: Spectral index, shadow detection, remote sensing images, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33257874 Surface Topography Measurement by Confocal Spectral Interferometry
Authors: A. Manallah, C. Meier
Abstract:
Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.
Keywords: Confocal spectral interferometry, Nondestructive testing, Optical metrology, Surface topography, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9747873 Statistical Modeling of Mobile Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad S. Daba, J. P. Dubois
Abstract:
Understanding the statistics of non-isotropic scattering multipath channels that fade randomly with respect to time, frequency, and space in a mobile environment is very crucial for the accurate detection of received signals in wireless and cellular communication systems. In this paper, we derive stochastic models for the probability density function (PDF) of the shift in the carrier frequency caused by the Doppler Effect on the received illuminating signal in the presence of a dominant line of sight. Our derivation is based on a generalized Clarke’s and a two-wave partially developed scattering models, where the statistical distribution of the frequency shift is shown to be consistent with the power spectral density of the Doppler shifted signal.
Keywords: Doppler shift, filtered Poisson process, generalized Clark’s model, non-isotropic scattering, partially developed scattering, Rician distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8337872 Thin Bed Reservoir Delineation Using Spectral Decomposition and Instantaneous Seismic Attributes, Pohokura Field, Taranaki Basin, New Zealand
Authors: P. Sophon, M. Kruachanta, S. Chaisri, G. Leaungvongpaisan, P. Wongpornchai
Abstract:
The thick bed hydrocarbon reservoirs are primarily interested because of the more prolific production. When the amount of petroleum in the thick bed starts decreasing, the thin bed reservoirs are the alternative targets to maintain the reserves. The conventional interpretation of seismic data cannot delineate the thin bed having thickness less than the vertical seismic resolution. Therefore, spectral decomposition and instantaneous seismic attributes were used to delineate the thin bed in this study. Short Window Discrete Fourier Transform (SWDFT) spectral decomposition and instantaneous frequency attributes were used to reveal the thin bed reservoir, while Continuous Wavelet Transform (CWT) spectral decomposition and envelope (instantaneous amplitude) attributes were used to indicate hydrocarbon bearing zone. The study area is located in the Pohokura Field, Taranaki Basin, New Zealand. The thin bed target is the uppermost part of Mangahewa Formation, the most productive in the gas-condensate production in the Pohokura Field. According to the time-frequency analysis, SWDFT spectral decomposition can reveal the thin bed using a 72 Hz SWDFT isofrequency section and map, and that is confirmed by the instantaneous frequency attribute. The envelope attribute showing the high anomaly indicates the hydrocarbon accumulation area at the thin bed target. Moreover, the CWT spectral decomposition shows the low-frequency shadow zone and abnormal seismic attenuation in the higher isofrequencies below the thin bed confirms that the thin bed can be a prospective hydrocarbon zone.
Keywords: Hydrocarbon indication, instantaneous seismic attribute, spectral decomposition, thin bed delineation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6407871 Mixtures of Monotone Networks for Prediction
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12467870 The Sequential Estimation of the Seismoacoustic Source Energy in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
The practical efficient approach is suggested for estimation of the seismoacoustic sources energy in C-OTDR monitoring systems. This approach is represents the sequential plan for confidence estimation both the seismoacoustic sources energy, as well the absorption coefficient of the soil. The sequential plan delivers the non-asymptotic guaranteed accuracy of obtained estimates in the form of non-asymptotic confidence regions with prescribed sizes. These confidence regions are valid for a finite sample size when the distributions of the observations are unknown. Thus, suggested estimates are non-asymptotic and nonparametric, and also these estimates guarantee the prescribed estimation accuracy in form of prior prescribed size of confidence regions, and prescribed confidence coefficient value.
Keywords: C-OTDR-system, guaranteed estimates, nonparametric estimation, sequential confidence estimation, multichannel monitoring systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20997869 Some New Upper Bounds for the Spectral Radius of Iterative Matrices
Authors: Guangbin Wang, Xue Li, Fuping Tan
Abstract:
In this paper, we present some new upper bounds for the spectral radius of iterative matrices based on the concept of doubly α diagonally dominant matrix. And subsequently, we give two examples to show that our results are better than the earlier ones.Keywords: doubly α diagonally dominant matrix, eigenvalue, iterative matrix, spectral radius, upper bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13397868 Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet
Authors: Talbi Mourad, Salhi Lotfi, Chérif Adnen
Abstract:
In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.
Keywords: Enhancement, spectral subtraction, SNR, discrete wavelet packet transform, spectral entropy Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19927867 Generalized Inverse Eigenvalue Problems for Symmetric Arrow-head Matrices
Authors: Yongxin Yuan
Abstract:
In this paper, we first give the representation of the general solution of the following inverse eigenvalue problem (IEP): Given X ∈ Rn×p and a diagonal matrix Λ ∈ Rp×p, find nontrivial real-valued symmetric arrow-head matrices A and B such that AXΛ = BX. We then consider an optimal approximation problem: Given real-valued symmetric arrow-head matrices A, ˜ B˜ ∈ Rn×n, find (A, ˆ Bˆ) ∈ SE such that Aˆ − A˜2 + Bˆ − B˜2 = min(A,B)∈SE (A−A˜2 +B −B˜2), where SE is the solution set of IEP. We show that the optimal approximation solution (A, ˆ Bˆ) is unique and derive an explicit formula for it.
Keywords: Partially prescribed spectral information, symmetric arrow-head matrix, inverse problem, optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17977866 Morphology of Parts of the Middle Benue Trough of Nigeria from Spectral Analysis of Aeromagnetic Data (Akiri Sheet 232 and Lafia Sheet 231)
Authors: B. S. Jatau, Nandom Abu
Abstract:
Structural interpretation of aeromagnetic data and Landsat imagery over the Middle Benue Trough was carried out to determine the depth to basement, delineate the basement morphology and relief, and the structural features within the basin. The aeromagnetic and Landsat data were subjected to various image and data enhancement and transformation routines. Results of the study revealed lineaments with trend directions in the N-S, NE-SW, NWSE and E-W directions, with the NE-SW trends been dominant. The depths to basement within the trough were established to be at 1.8, 0.3 and 0.8km, as shown from the spectral analysis plot. The Source Parameter Imaging (SPI) plot generated showed the centralsouth/ eastern portion of the study area as being deeper in contrast to the western-south-west portion. The basement morphology of the trough was interpreted as having parallel sets of micro-basins which could be considered as grabens and horsts in agreement with the general features interpreted by early workers.
Keywords: Morphology, Middle Benue Trough, Spectral Analysis, Source Parameter Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40667865 Double Diffusive Convection in a Partially Porous Cavity under Suction/Injection Effects
Authors: Y. Outaleb, K. Bouhadef, O. Rahli
Abstract:
Double-diffusive steady convection in a partially porous cavity with partially permeable walls and under the combined buoyancy effects of thermal and mass diffusion was analysed numerically using finite volume method. The top wall is well insulated and impermeable while the bottom surface is partially well insulated and impermeable and partially submitted to constant temperature T1 and concentration C1. Constant equal temperature T2 and concentration C2 are imposed along the vertical surfaces of the enclosure. Mass suction/injection and injection/suction are respectively considered at the bottom of the porous centred partition and at one of the vertical walls. Heat and mass transfer characteristics as streamlines and average Nusselt numbers and Sherwood numbers were discussed for different values of buoyancy ratio, Rayleigh number, and injection/suction coefficient. It is especially noted that increasing the injection factor disadvantages the exchanges in the case of the injection while the transfer is augmented in case of suction. On the other hand, a critical value of the buoyancy ratio was highlighted for which heat and mass transfers are minimized.Keywords: Double diffusive convection, Injection/Extraction, Partially porous cavity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15627864 Spectral Assessing of Topographic Effects on Seismic Behavior of Trapezoidal Hill
Authors: M. Amelsakhi, A. Sohrabi-Bidar, A. Shareghi
Abstract:
One of the most important issues about the structural damages caused by earthquake is the evaluating of the spectral response of the site on which the construction is built. This fact has demonstrated during many earlier earthquakes and many researchers’ reports have concerned with it. According to these reports, features of the site materials and geometry of the ground surface are considered the main factors. This study concentrates on the specific form of topographies like hills. Assessing of spectral responses of different points on the hills and beside demonstrates considerable differences between 1D and 2D methods of geotechnical analyses. A general trend of amplifications on the top of the hills and de-amplifications near the toe of the hills has been appeared within the acceleration, velocity and displacement response spectrums of horizontal motion. Evaluating of spectral responses of different sizes of the hills revealed that as much as the hill-size enlarges differences between spectral responses of 1D and 2D analyses transfers to longer range of periods and becomes wider.
Keywords: Topography effect, Amplification ratio, Response spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890