Search results for: liquid fuel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1190

Search results for: liquid fuel

1190 Investigation on Performance and Emission Characteristics of CI Engine Fuelled with Producer Gas and Esters of Hingan (Balanites)Oil in Dual Fuel Mode

Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre

Abstract:

Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the virgin biomass obtained from hingan shell is used as the feedstock for gasifier to generate producer gas. The gasifier-engine system is operated on diesel and on esters of vegetable oil of hingan in liquid fuel mode operation and then on liquid fuel and producer gas combination in dual fuel mode operation. The performance and emission characteristics of the CI engine is analyzed by running the engine in liquid fuel mode operation and in dual fuel mode operation at different load conditions with respect to maximum diesel savings in the dual fuel mode operation. It was observed that specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine using diesel or hingan oil methyl ester (HOME) is higher than that of dual fuel mode operation. A diesel replacement in the tune of 60% in dual fuel mode is possible with the use of hingan shell producer gas. The emissions parameters such CO, HC, NOx, CO2 and smoke are higher in the case of dual fuel mode of operation as compared to that of liquid fuel mode.

Keywords: Esters, performance, producer gas, vegetable oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
1189 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: Waste oil, pyrolysis oil, Y zeolite, gasoline, diesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
1188 The Pack-Bed Sphere Liquid Porous Burner

Authors: B. Krittacom, P. Amatachaya, W. Srimuang, K. Inla

Abstract:

The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PE

Keywords: Liquid fuel, Porous burner, Temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1187 Low NOx Combustion Technology for Minimizing NOx

Authors: Sewon Kim, Changyeop Lee, Minjun Kwon

Abstract:

A noble low NOx combustion technology, based on partial oxidation combustion concept in a fuel rich combustion zone, is successfully applied in this research. The burner is designed such that a portion of fuel is heated and pre-vaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, and fuel distribution ratio on the emissions of NOx and CO are experimentally investigated. This newly developed combustion technology showed very low NOx emission level, about 12 ppm, when light oil is used as a fuel.

Keywords: Burner, low NOx, liquid fuel, partial oxidation, fuel rich.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924
1186 Modeling the Vapor Pressure of Biodiesel Fuels

Authors: O. Castellanos Díaz, F. Schoeggl, H. W. Yarranton, M. A. Satyro, T. M. Lovestead, T. J. Bruno

Abstract:

The composition, vapour pressure, and heat capacity of nine biodiesel fuels from different sources were measured. The vapour pressure of the biodiesel fuels is modeled assuming an ideal liquid phase of the fatty acid methyl esters constituting the fuel. New methodologies to calculate the vapour pressure and ideal gas and liquid heat capacities of the biodiesel fuel constituents are proposed. Two alternative optimization scenarios are evaluated: 1) vapour pressure only; 2) vapour pressure constrained with liquid heat capacity. Without physical constraints, significant errors in liquid heat capacity predictions were found whereas the constrained correlation accurately fit both vapour pressure and liquid heat capacity.

Keywords: Biodiesel fuels, Fatty acid methyl ester, Heat capacity, Modeling, Vapour pressure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6013
1185 Effect of Fuel Spray Angle on Soot Formation in Turbulent Spray Flames

Authors: K. Bashirnezhad, M. Moghiman, M. Javadi Amoli, F. Tofighi, S. Zabetnia

Abstract:

Results are presented from a combined experimental and modeling study undertaken to understand the effect of fuel spray angle on soot production in turbulent liquid spray flames. The experimental work was conducted in a cylindrical laboratory furnace at fuel spray cone angle of 30º, 45º and 60º. Soot concentrations inside the combustor are measured by filter paper technique. The soot concentration is modeled by using the soot particle number density and the mass density based acetylene concentrations. Soot oxidation occurred by both hydroxide radicals and oxygen molecules. The comparison of calculated results against experimental measurements shows good agreement. Both the numerical and experimental results show that the peak value of soot and its location in the furnace depend on fuel spray cone angle. An increase in spray angle enhances the evaporating rate and peak temperature near the nozzle. Although peak soot concentration increase with enhance of fuel spray angle but soot emission from the furnace decreases.

Keywords: Soot, spray angle, turbulent flames, liquid fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1184 Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends

Authors: Velmurugan. A, Loganathan. M

Abstract:

The increased number of automobiles in recent years has resulted in great demand for fossil fuel. This has led to the development of automobile by using alternative fuels which include gaseous fuels, biofuels and vegetables oils as fuel. Energy from biomass and more specific bio-diesel is one of the opportunities that could cover the future demand of fossil fuel shortage. Biomass in the form of cashew nut shell represents a new energy source and abundant source of energy in India. The bio-fuel is derived from cashew nut shell oil and its blend with diesel are promising alternative fuel for diesel engine. In this work the pyrolysis Cashew Nut Shell Liquid (CNSL)-Diesel Blends (CDB) was used to run the Direct Injection (DI) diesel engine. The experiments were conducted with various blends of CNSL and Diesel namely B20, B40, B60, B80 and B100. The results are compared with neat diesel operation. The brake thermal efficiency was decreased for blends of CNSL and Diesel except the lower blends of B20. The brake thermal efficiency of B20 is nearly closer to that of diesel fuel. Also the emission level of the all CNSL and Diesel blends was increased compared to neat diesel. The higher viscosity and lower volatility of CNSL leads to poor mixture formation and hence lower brake thermal efficiency and higher emission levels. The higher emission level can be reduced by adding suitable additives and oxygenates with CNSL and Diesel blends.

Keywords: Bio-oil, Biodiesel, Cardanol, Cashew nut shell liquid (CNSL)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3944
1183 Influence of Type of Burner on NOx Emission Characteristics from Combustion of Palm Methyl Ester

Authors: Nozomu Hashimoto, Hiroyuki Nishida, Yasushi Ozawa, Tetsushiro Iwatsubo, Jun Inumaru

Abstract:

Palm methyl ester (PME) is one of the alternative biomass fuels to liquid fossil fuels. To investigate the combustion characteristics of PME as an alternative fuel for gas turbines, combustion experiments using two types of burners under atmospheric pressure were performed. One of the burners has a configuration making strong non-premixed flame, whereas the other has a configuration promoting prevaporization of fuel droplets. The results show that the NOx emissions can be reduced by employing the latter burner without accumulation of soot when PME is used as a fuel. A burner configuration promoting prevaporzation of fuel droplets is recommended for PME.

Keywords: Palm methyl ester (PME), biodiesel fuel, gas turbine, spray combustion, NOx emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1182 Nonlinear Dynamic Modeling and Active Vibration Control of a System with Fuel Sloshing

Authors: A. A. Jafari, A. M. Khoshnood, J. Roshanian

Abstract:

Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.

Keywords: nonlinear dynamic modeling, fuel sloshing, vibration control, model reference, adaptive filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
1181 Optimization of PEM Fuel Cell Biphasic Model

Authors: Boubekeur Dokkar, Nasreddine Chennouf, Noureddine Settou, Belkhir Negrou, Abdesslam Benmhidi

Abstract:

The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.

Keywords: Biphasic model, PEM fuel cell, optimization, simulation, specie transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
1180 On the Characteristics of Liquid Explosive Dispersing Flow

Authors: Lei Li, Xiaobing Ren, Xiaoxia Lu, Xiaofang Yan

Abstract:

In this paper, some experiments of liquid dispersion flow driven by explosion in vertical plane were carried out using a liquid explosive dispersion device with film cylindrical constraints. The separated time series describing the breakup shape and dispersion process of liquid were recorded with high speed CMOS camera. The experimental results were analyzed and some essential characteristics of liquid dispersing flow are presented.

Keywords: Explosive Disseminations, liquid dispersion Flow, Cavitations, Gasification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
1179 Optimization of Fuel Consumption of a Bus used in City Line with Regulation of Driving Characteristics

Authors: Muammer Ozkan, Orkun Ozener, Irfan Yavasliol

Abstract:

The fuel cost of the motor vehicle operating on its common route is an important part of the operating cost. Therefore, the importance of the fuel saving is increasing day by day. One of the parameters which improve fuel saving is the regulation of driving characteristics. The number and duration of stop is increased by the heavy traffic load. It is possible to improve the fuel saving with regulation of traffic flow and driving characteristics. The researches show that the regulation of the traffic flow decreases fuel consumption, but it is not enough to improve fuel saving without the regulation of driving characteristics. This study analyses the fuel consumption of two trips of city bus operating on its common route and determines the effect of traffic density and driving characteristics on fuel consumption. Finally it offers some suggestions about regulation of driving characteristics to improve the fuel saving. Fuel saving is determined according to the results obtained from simulation program. When experimental and simulation results are compared, it has been found that the fuel saving was reached up the to 40 percent ratios.

Keywords: Fuel Consumption, Fuel Economy, Driving Characteristics, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
1178 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: Liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
1177 Online Measurement of Fuel Stack Elongation

Authors: Sung Ho Ahn, Jintae Hong, Chang Young Joung, Tae Ho Yang, Sung Ho Heo, Seo Yun Jang

Abstract:

The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments.

Keywords: Axial deformation, elongation measurement, in-pile instrumentation, LVDT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
1176 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission

Authors: Changyeop Lee, Sewon Kim

Abstract:

Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

Keywords: Fuel lean reburn, NOx, CO, LNG flame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
1175 Thermo Mechanical Design and Analysis of PEM Fuel cell Plate

Authors: Saravana Kannan Thangavelu

Abstract:

Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.

Keywords: Design optimization, FEA, PEM fuel cell, Thermal stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
1174 A Comparison of Fuel Usage and Harvest Capacity in Self-Propelled Forage Harvesters

Authors: Brian H. Marsh

Abstract:

Self-propelled forage harvesters in the 850 horsepower range were tested over three years for fuel consumption, throughput and quality of chop for corn silage. Cut length had a significant effect on fuel consumption, throughput and some aspects of chop quality. Measure cut length was often different than theoretical length of cut. Where cut length was equivalent fuel consumption and throughput were equivalent across brands. Shortening cut length from 17 to 11mm increases fuel consumption 53 percent measured as Mg of silage harvested per gallon of fuel used and a 42 percent decrease in capacity as tons of fresh material per hour run time.

Keywords: Corn silage, forage harvester, fuel use, length of cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5065
1173 The Effect of Alternative Fuel Combustion in the Cement Kiln Main Burner on Production Capacity and Improvement with Oxygen Enrichment

Authors: W. K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim

Abstract:

A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capacity had to be reduced by 1-15 %, depending on the fuel type. The reason for the reduction is increased exhaust gas flow rates caused by the fuel characteristics. The model, which has been successfully validated in a full-scale experiment, was also used to show that the negative impact on the production capacity can be avoided if a relatively small part of the combustion air is replaced by pure oxygen.

Keywords: Alternative fuels, Cement kiln main burner, Oxygen enrichment, Production capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5532
1172 Irreversibility and Electrochemical Modeling of GT-SOFC Hybrid System and Parametric Analysis on Performance of Fuel Cell

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

Since the heart of the hybrid system is the fuel cell and it has vital impact on efficiency and performance of cycle, in this study, the major modeling of electrochemical reaction within the fuel cell is analyzed. Also, solid oxide fuel cell is integrated with the gas turbine and thermodynamic analysis on different elements of hybrid system is applied. Next, in predefined operational points of hybrid cycle, the simulation results are obtained. Then, different source of irreversibility in fuel cell is modeled and influence of different major parameters on different irreversibility is computed and applied. Then, the effect of important parameters such as thickness and surface of electrolyte fuel cell are simulated in fuel cell and its dependency to these parameters is explained. At the end of the paper, different impact of parameters on fuel cell with a gas turbine and current density and voltage of fuel cell are simulated.

Keywords: Electrochemical analysis, Gas turbine, Hybrid system, Irreversibility analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
1171 The Fuel Consumption and Non Linear Model Metropolitan and Large City Transportation System

Authors: Mudjiastuti Handajani

Abstract:

The national economy development affects the vehicle ownership which ultimately increases fuel consumption. The rise of the vehicle ownership is dominated by the increasing number of motorcycles. This research aims to analyze and identify the characteristics of fuel consumption, the city transportation system, and to analyze the relationship and the effect of the city transportation system on the fuel consumption. A multivariable analysis is used in this study. The data analysis techniques include: a Multivariate Multivariable Analysis by using the R software. More than 84% of fuel on Java is consumed in metropolitan and large cities. The city transportation system variables that strongly effect the fuel consumption are population, public vehicles, private vehicles and private bus. This method can be developed to control the fuel consumption by considering the urban transport system and city tipology. The effect can reducing subsidy on the fuel consumption, increasing state economic.

Keywords: city, consumption, fuel, transportation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1170 Gas-Liquid Interaction on Perforated Plates

Authors: M.O. Balabekova, O.S. Balabekov

Abstract:

The paper deals with hydrodynamics of liquid-gas layers under gas streaming through liquid layer on perforated plates in column apparatuses. The plates with large apertures have been investigated especially. It was shown that hydrodynamic regularities for these plates are essentially different from known laws for foam forming on fine-perforated plates. Main regularities of liquid-gas interaction on plates with large apertures have been established.

Keywords: column apparatus, large aperture, liquid-gas layer, perforated plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1169 Design and Simulation of Air-Fuel Ratio Control System for Distributorless CNG Engine

Authors: Ei Ei Moe, Zaw Min Aung, Kyawt Khin

Abstract:

This paper puts forward one kind of air-fuel ratio control method with PI controller. With the help of MATLAB/SIMULINK software, the mathematical model of air-fuel ratio control system for distributorless CNG engine is constructed. The objective is to maintain cylinder-to-cylinder air-fuel ratio at a prescribed set point, determined primarily by the state of the Three- Way-Catalyst (TWC), so that the pollutants in the exhaust are removed with the highest efficiency. The concurrent control of airfuel under transient conditions could be implemented by Proportional and Integral (PI) controller. The simulation result indicates that the control methods can easily eliminate the air/fuel maldistribution and maintain the air/fuel ratio at the stochiometry within minimum engine events.

Keywords: Distributorless CNG Engine, Mathematical Modelof Air-fuel control, MATLAB/SIMULINK, PI controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4491
1168 Ionic Liquid Promoted One-pot Synthesis of Benzo[b][1,4]oxazines

Authors: Ebrahim Soleimani, Afsaneh Taheri Kal koshvandi

Abstract:

benzo[b][1,4]oxazines have been synthesized in good to excellent yields in the presence of the ionic liquid 1-butyl-3- methylimidazolium bromide [bmim]Br under relatively mild conditions without any added catalyst, the reaction workup is simple and the ionic liquid can be easily separated from the product and reused.

Keywords: Isocyanide, Benzo[b][1, 4]oxazines, Multi-componentreactions, [bmim]Br, Ionic Liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
1167 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: Fuel cell dynamics, real time simulation, fuel cell, modelling, testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
1166 Influence of Gas-Liquid Separator Design on Performance of Airlift Bioreactors

Authors: Mateus N. Esperança, Marcel O. Cerri, Alberto C. Badino

Abstract:

The performance of airlift bioreactors are closely related with their geometry, especially the gas-liquid separator design. In this study, the influence of the gas-liquid separator geometry on oxygen transfer and gas hold-up was evaluated in 10-L concentric-tube airlift bioreactor operating with distilled water and xanthan gum solution. The specific airflow rate (ɸAIR) exhibited the higher effect on the oxygen transfer coefficient (kLa) for both fluids. While the gas-liquid separator openness angle (α) and liquid volume fraction on the gas-liquid separator (VGLS) have presented opposite effects on oxygen mass transfer, they affected negatively the global gas hold-up of distilled water system. The best degassing zone geometry corresponded to a 90° openness angle with 10% of the liquid on it.

Keywords: Airlift bioreactor, gas holdup, gas-liquid separator, oxygen transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
1165 Liquid-Liquid Equilibrium Data for Butan-2-ol - Ethanol - Water, Pentan-1-ol - Ethanol - Water and Toluene - Acetone - Water Systems

Authors: Tinuade Jolaade Afolabi, Theresa Ibibia Edewor

Abstract:

Experimental liquid-liquid equilibra of butan-2-ol - ethanol -water; pentan-1-ol - ethanol - water and toluene - acetone - water ternary systems were investigated at (25oC). The reliability of the experimental tie-line data was ascertained by using Othmer-Tobias and Hand plots. The distribution coefficients (D) and separation factors (S) of the immiscibility region were evaluated for the three systems.

Keywords: Distribution coefficient, Liquid-liquid equilibrium, separation factors, thermodynamic models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3844
1164 Role of Biorefining and Biomass Utilization in Environmental Control

Authors: Subir Kundu, Sukhendra Singh, Sumedha Ojha, Kanika Kundu

Abstract:

The continuous decline of petroleum and natural gas reserves and non linear rise of oil price has brought about a realisation of the need for a change in our perpetual dependence on the fossil fuel. A day to day increased consumption of crude and petroleum products has made a considerable impact on our foreign exchange reserves. Hence, an alternate resource for the conversion of energy (both liquid and gas) is essential for the substitution of conventional fuels. Biomass is the alternate solution for the present scenario. Biomass can be converted into both liquid as well as gaseous fuels and other feedstocks for the industries.

Keywords: Bioenergy, Biomass conversion, Biorefining, Efficient utilisation of night soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1163 Evaluation of Model and Performance of Fuel Cell Hybrid Electric Vehicle in Different Drive Cycles

Authors: Fathollah Ommi, Golnaz Pourabedin, Koros Nekofa

Abstract:

In recent years fuel cell vehicles are rapidly appearing all over the globe. In less than 10 years, fuel cell vehicles have gone from mere research novelties to operating prototypes and demonstration models. At the same time, government and industry in development countries have teamed up to invest billions of dollars in partnerships intended to commercialize fuel cell vehicles within the early years of the 21st century. The purpose of this study is evaluation of model and performance of fuel cell hybrid electric vehicle in different drive cycles. A fuel cell system model developed in this work is a semi-experimental model that allows users to use the theory and experimental relationships in a fuel cell system. The model can be used as part of a complex fuel cell vehicle model in advanced vehicle simulator (ADVISOR). This work reveals that the fuel consumption and energy efficiency vary in different drive cycles. Arising acceleration and speed in a drive cycle leads to Fuel consumption increase. In addition, energy losses in drive cycle relates to fuel cell system power request. Parasitic power in different parts of fuel cell system will increase when power request increases. Finally, most of energy losses in drive cycle occur in fuel cell system because of producing a lot of energy by fuel cell stack.

Keywords: Drive cycle, Energy efficiency, energy consumption, Fuel cell system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1162 Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Authors: Ashutosh Kumar Rai, Naveen Kumar, Bhupendra Singh Chauhan

Abstract:

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

Keywords: Bio-fuel, exhaust emission, linseed oil, triglyceride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3852
1161 Efficient Utilization of Biomass for Bioenergy in Environmental Control

Authors: Subir Kundu, Sukhendra Singh, Sumedha Ojha, Kanika Kundu

Abstract:

The continuous decline of petroleum and natural gas reserves and non linear rise of oil price has brought about a realisation of the need for a change in our perpetual dependence on the fossil fuel. A day to day increased consumption of crude and petroleum products has made a considerable impact on our foreign exchange reserves. Hence, an alternate resource for the conversion of energy (both liquid and gas) is essential for the substitution of conventional fuels. Biomass is the alternate solution for the present scenario. Biomass can be converted into both liquid as well as gaseous fuels and other feedstocks for the industries.

Keywords: Bioenergy, Biomass conversion, Biorefining, Efficient utilisation of night soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404