Search results for: illumination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 101

Search results for: illumination

101 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho

Abstract:

Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.

Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
100 Geometric Modeling of Illumination on the TFT-LCD Panel using Bezier Surface

Authors: Kyong-min Lee, Moon Soo Chang, PooGyeon Park

Abstract:

In this paper, we propose a geometric modeling of illumination on the patterned image containing etching transistor. This image is captured by a commercial camera during the inspection of a TFT-LCD panel. Inspection of defect is an important process in the production of LCD panel, but the regional difference in brightness, which has a negative effect on the inspection, is due to the uneven illumination environment. In order to solve this problem, we present a geometric modeling of illumination consisting of an interpolation using the least squares method and 3D modeling using bezier surface. Our computational time, by using the sampling method, is shorter than the previous methods. Moreover, it can be further used to correct brightness in every patterned image.

Keywords: Bezier, defect, geometric modeling, illumination, inspection, LCD, panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
99 Adaptive Block State Update Method for Separating Background

Authors: Youngsuck Ji, Youngjoon Han, Hernsoo Hahn

Abstract:

In this paper, we proposed the robust mobile object detection method for light effect in the night street image block based updating reference background model using block state analysis. Experiment image is acquired sequence color video from steady camera. When suddenly appeared artificial illumination, reference background model update this information such as street light, sign light. Generally natural illumination is change by temporal, but artificial illumination is suddenly appearance. So in this paper for exactly detect artificial illumination have 2 state process. First process is compare difference between current image and reference background by block based, it can know changed blocks. Second process is difference between current image-s edge map and reference background image-s edge map, it possible to estimate illumination at any block. This information is possible to exactly detect object, artificial illumination and it was generating reference background more clearly. Block is classified by block-state analysis. Block-state has a 4 state (i.e. transient, stationary, background, artificial illumination). Fig. 1 is show characteristic of block-state respectively [1]. Experimental results show that the presented approach works well in the presence of illumination variance.

Keywords: Block-state, Edge component, Reference backgroundi, Artificial illumination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
98 Electromagnetic Imaging of Inhomogeneous Dielectric Cylinders Buried in a Slab Mediumby TE Wave Illumination

Authors: Chung-Hsin Huang, Chien-Ching Chiu, Chun Jen Lin

Abstract:

The electromagnetic imaging of inhomogeneous dielectric cylinders buried in a slab medium by transverse electric (TE) wave illumination is investigated. Dielectric cylinders of unknown permittivities are buried in second space and scattered a group of unrelated waves incident from first space where the scattered field is recorded. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results are given to demonstrate the capability of the inverse algorithm. Good reconstruction is obtained even in the presence of additive Gaussian random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.

Keywords: Slab Medium, Unrelated Illumination Method, TEWave Illumination, Inhomogeneous Cylinders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
97 2D Spherical Spaces for Face Relighting under Harsh Illumination

Authors: Amr Almaddah, Sadi Vural, Yasushi Mae, Kenichi Ohara, Tatsuo Arai

Abstract:

In this paper, we propose a robust face relighting technique by using spherical space properties. The proposed method is done for reducing the illumination effects on face recognition. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients. First, an internal training illumination database is generated by computing face albedo and face normal from 2D images under different lighting conditions. Based on the generated database, we analyze the target face pixels and compare them with the training bootstrap by using pre-generated tiles. In this work, practical real time processing speed and small image size were considered when designing the framework. In contrast to other works, our technique requires no 3D face models for the training process and takes a single 2D image as an input. Experimental results on publicly available databases show that the proposed technique works well under severe lighting conditions with significant improvements on the face recognition rates.

Keywords: Face synthesis and recognition, Face illumination recovery, 2D spherical spaces, Vision for graphics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
96 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum

Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas

Abstract:

Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.

Keywords: Microalgae, illumination, nitrate uptake, flashing light effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
95 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely used as an effective method for moving objects detection in many computer vision applications. Recently, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are the most frequently occurred problems in the practical situation. This paper presents a favorable two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean value of each RGB color channel. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the output of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate very competitive performance compared to previous models.

Keywords: Background subtraction, codebook model, local binary pattern, dynamic background, illumination changes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
94 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms

Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma

Abstract:

In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.

Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
93 Cartoon Effect and Ambient Illumination Based Depth Perception Assessment of 3D Video

Authors: G. Nur

Abstract:

Monitored 3-Dimensional (3D) video experience can be utilized as “feedback information” to fine tune the service parameters for providing a better service to the demanding 3D service customers. The 3D video experience which includes both video quality and depth perception is influenced by several contextual and content related factors (e.g., ambient illumination condition, content characteristics, etc) due to the complex nature of the 3D video. Therefore, effective factors on this experience should be utilized while assessing it. In this paper, structural information of the depth map sequences of the 3D video is considered as content related factor effective on the depth perception assessment. Cartoon-like filter is utilized to abstract the significant depth levels in the depth map sequences to determine the structural information. Moreover, subjective experiments are conducted using 3D videos associated with cartoon-like depth map sequences to investigate the effectiveness of ambient illumination condition, which is a contextual factor, on depth perception. Using the knowledge gained through this study, 3D video experience metrics can be developed to deliver better service to the 3D video service users. 

Keywords: 3D Video, Ambient Illumination, Cartoon Effect, Depth Perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
92 Face Localization and Recognition in Varied Expressions and Illumination

Authors: Hui-Yu Huang, Shih-Hang Hsu

Abstract:

In this paper, we propose a robust scheme to work face alignment and recognition under various influences. For face representation, illumination influence and variable expressions are the important factors, especially the accuracy of facial localization and face recognition. In order to solve those of factors, we propose a robust approach to overcome these problems. This approach consists of two phases. One phase is preprocessed for face images by means of the proposed illumination normalization method. The location of facial features can fit more efficient and fast based on the proposed image blending. On the other hand, based on template matching, we further improve the active shape models (called as IASM) to locate the face shape more precise which can gain the recognized rate in the next phase. The other phase is to process feature extraction by using principal component analysis and face recognition by using support vector machine classifiers. The results show that this proposed method can obtain good facial localization and face recognition with varied illumination and local distortion.

Keywords: Gabor filter, improved active shape model (IASM), principal component analysis (PCA), face alignment, face recognition, support vector machine (SVM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
91 Enhanced Approaches to Rectify the Noise, Illumination and Shadow Artifacts

Authors: M. Sankari, C. Meena

Abstract:

Enhancing the quality of two dimensional signals is one of the most important factors in the fields of video surveillance and computer vision. Usually in real-life video surveillance, false detection occurs due to the presence of random noise, illumination and shadow artifacts. The detection methods based on background subtraction faces several problems in accurately detecting objects in realistic environments: In this paper, we propose a noise removal algorithm using neighborhood comparison method with thresholding. The illumination variations correction is done in the detected foreground objects by using an amalgamation of techniques like homomorphic decomposition, curvelet transformation and gamma adjustment operator. Shadow is removed using chromaticity estimator with local relation estimator. Results are compared with the existing methods and prove as high robustness in the video surveillance.

Keywords: Chromaticity Estimator, Curvelet Transformation, Denoising, Gamma correction, Homomorphic, Neighborhood Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
90 Face Texture Reconstruction for Illumination Variant Face Recognition

Authors: Pengfei Xiong, Lei Huang, Changping Liu

Abstract:

In illumination variant face recognition, existing methods extracting face albedo as light normalized image may lead to loss of extensive facial details, with light template discarded. To improve that, a novel approach for realistic facial texture reconstruction by combining original image and albedo image is proposed. First, light subspaces of different identities are established from the given reference face images; then by projecting the original and albedo image into each light subspace respectively, texture reference images with corresponding lighting are reconstructed and two texture subspaces are formed. According to the projections in texture subspaces, facial texture with normal light can be synthesized. Due to the combination of original image, facial details can be preserved with face albedo. In addition, image partition is applied to improve the synthesization performance. Experiments on Yale B and CMUPIE databases demonstrate that this algorithm outperforms the others both in image representation and in face recognition.

Keywords: texture reconstruction, illumination, face recognition, subspaces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
89 A Hybrid Method for Eyes Detection in Facial Images

Authors: Muhammad Shafi, Paul W. H. Chung

Abstract:

This paper proposes a hybrid method for eyes localization in facial images. The novelty is in combining techniques that utilise colour, edge and illumination cues to improve accuracy. The method is based on the observation that eye regions have dark colour, high density of edges and low illumination as compared to other parts of face. The first step in the method is to extract connected regions from facial images using colour, edge density and illumination cues separately. Some of the regions are then removed by applying rules that are based on the general geometry and shape of eyes. The remaining connected regions obtained through these three cues are then combined in a systematic way to enhance the identification of the candidate regions for the eyes. The geometry and shape based rules are then applied again to further remove the false eye regions. The proposed method was tested using images from the PICS facial images database. The proposed method has 93.7% and 87% accuracies for initial blobs extraction and final eye detection respectively.

Keywords: Erosion, dilation, Edge-density

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
88 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering

Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause

Abstract:

In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.

Keywords: Image processing, Illumination equalization, Shadow filtering, Object detection, Colour models, Image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021
87 Toward Indoor and Outdoor Surveillance Using an Improved Fast Background Subtraction Algorithm

Authors: A. El Harraj, N. Raissouni

Abstract:

The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes invariance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.

Keywords: Video surveillance, background subtraction, Contrast Limited Histogram Equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
86 Analysis of the Long-term Effect of Office Lighting Environment on Human Reponses

Authors: D.Y. Su, C.C. Liu, C.M. Chiang, W. Wang

Abstract:

This study aims to discuss the effect of illumination and the color temperature of the lighting source under the office lighting environment on human psychological and physiological responses. In this study, 21 healthy participants were selected, and the Ryodoraku measurement system was utilized to measure their skin resistance change.The findings indicated that the effect of the color temperature of the lighting source on human physiological responses is significant within 90 min after turning the lights on; while after 90 min the effect of illumination on human physiological responses is higher than that of the color temperature. Moreover, the cardiovascular, digestive and endocrine systems are prone to be affected by the indoor lighting environment. During the long-term exposure to high intensity of illumination and high color temperature (2000Lux -6500K), the effect on the psychological responses turned moderate after the human visual system adopted to the lighting environment. However, the effect of the Ryodoraku value on human physiological responses was more significant with the increase of perceptive time. The effect of long time exposure to a lighting environment on the physiological responses is greater than its effect on the psychological responses. This conclusion is different from the traditional public viewpoint that the effect on the psychological responses is greater.

Keywords: Autonomic nervous system, Human responses, Office Lighting Environment, Ryodoraku, Meridian

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
85 Face Localization Using Illumination-dependent Face Model for Visual Speech Recognition

Authors: Robert E. Hursig, Jane X. Zhang

Abstract:

A robust still image face localization algorithm capable of operating in an unconstrained visual environment is proposed. First, construction of a robust skin classifier within a shifted HSV color space is described. Then various filtering operations are performed to better isolate face candidates and mitigate the effect of substantial non-skin regions. Finally, a novel Bhattacharyya-based face detection algorithm is used to compare candidate regions of interest with a unique illumination-dependent face model probability distribution function approximation. Experimental results show a 90% face detection success rate despite the demands of the visually noisy environment.

Keywords: Audio-visual speech recognition, Bhattacharyyacoefficient, face detection,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
84 Object Recognition on Horse Riding Simulator System

Authors: Kyekyung Kim, Sangseung Kang, Suyoung Chi, Jaehong Kim

Abstract:

In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.

Keywords: Horse riding simulator, Object detection, Object recognition, User identification, Pose recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
83 Skin Detection using Histogram depend on the Mean Shift Algorithm

Authors: Soo- Young Ye, Ki-Gon Nam, Ki-Won Byun

Abstract:

In this paper, we were introduces a skin detection method using a histogram approximation based on the mean shift algorithm. The proposed method applies the mean shift procedure to a histogram of a skin map of the input image, generated by comparison with standard skin colors in the CbCr color space, and divides the background from the skin region by selecting the maximum value according to brightness level. The proposed method detects the skin region using the mean shift procedure to determine a maximum value that becomes the dividing point, rather than using a manually selected threshold value, as in existing techniques. Even when skin color is contaminated by illumination, the procedure can accurately segment the skin region and the background region. The proposed method may be useful in detecting facial regions as a pretreatment for face recognition in various types of illumination.

Keywords: Skin region detection, mean shift, histogram approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
82 Local Steerable Pyramid Binary Pattern Sequence LSPBPS for Face Recognition Method

Authors: Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Mohammed Rziza, Driss Aboutajdine

Abstract:

In this paper the problem of face recognition under variable illumination conditions is considered. Most of the works in the literature exhibit good performance under strictly controlled acquisition conditions, but the performance drastically drop when changes in pose and illumination occur, so that recently number of approaches have been proposed to deal with such variability. The aim of this work is to introduce an efficient local appearance feature extraction method based steerable pyramid (SP) for face recognition. Local information is extracted from SP sub-bands using LBP(Local binary Pattern). The underlying statistics allow us to reduce the required amount of data to be stored. The experiments carried out on different face databases confirm the effectiveness of the proposed approach.

Keywords: Face recognition (FR), Steerable pyramid (SP), localBinary Pattern (LBP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
81 Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays

Authors: Mariya P. Aleksandrova, Ivelina N. Cholakova, Georgy K. Bodurov, Georgy D. Kolev, Georgy H. Dobrikov

Abstract:

Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.

Keywords: Flexible displays, indium tin oxide, RF sputtering, UV treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
80 Video-based Face Recognition: A Survey

Authors: Huafeng Wang, Yunhong Wang, Yuan Cao

Abstract:

During the past several years, face recognition in video has received significant attention. Not only the wide range of commercial and law enforcement applications, but also the availability of feasible technologies after several decades of research contributes to the trend. Although current face recognition systems have reached a certain level of maturity, their development is still limited by the conditions brought about by many real applications. For example, recognition images of video sequence acquired in an open environment with changes in illumination and/or pose and/or facial occlusion and/or low resolution of acquired image remains a largely unsolved problem. In other words, current algorithms are yet to be developed. This paper provides an up-to-date survey of video-based face recognition research. To present a comprehensive survey, we categorize existing video based recognition approaches and present detailed descriptions of representative methods within each category. In addition, relevant topics such as real time detection, real time tracking for video, issues such as illumination, pose, 3D and low resolution are covered.

Keywords: Face recognition, video-based, survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4122
79 A New Approach to Face Recognition Using Dual Dimension Reduction

Authors: M. Almas Anjum, M. Younus Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.

Keywords: Biometrics, DCT, Face Recognition, Illumination, Computation, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
78 Learning to Recognize Faces by Local Feature Design and Selection

Authors: Yanwei Pang, Lei Zhang, Zhengkai Liu

Abstract:

Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.

Keywords: Face recognition, local feature, AdaBoost, subspace analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
77 Face Recognition Using Double Dimension Reduction

Authors: M. A Anjum, M. Y. Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.

Keywords: Biometrics, DCT, Face Recognition, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
76 The Impact of Colours on Online Marketing Communications

Authors: Chai-Lee Goi

Abstract:

Colour choice has become a common strategy and correlates highly with marketing. Three broad functions can be identified for colour in a building context especially applied in marketing communications, which are its role as an important parameter in illumination designs, its capacity to influence the visual appearance of a building in a predictable manner and as an aesthetic function. The review of literatures shows that colour has an impact on online marketing communications, and relations between colour, web and marketing communications.

Keywords: Colour, website, marketing communications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
75 Adaptive Skin Segmentation Using Color Distance Map

Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae

Abstract:

In this paper an effective approach for segmenting human skin regions in images taken at different environment is proposed. The proposed method uses a color distance map that is flexible enough to reliably detect the skin regions even if the illumination conditions of the image vary. Local image conditions is also focused, which help the technique to adaptively detect differently illuminated skin regions of an image. Moreover, usage of local information also helps the skin detection process to get rid of picking up much noisy pixels.

Keywords: Color Distance map, Reference skin color, Regiongrowing, Skin segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
74 Physiological and Psychological Influence on Office Workers during Demand Response

Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura

Abstract:

In recent years, the power system has been changed and a flexible power pricing system such as demand response has been sought in Japan. The demand response system works simply in the household sector and the owner as the decision-maker, can benefit from power saving. On the other hand, the execution of demand response in the office building is more complex than in the household because various people such as owners, building administrators and occupants are involved in the decision-making process. While the owners benefit from demand saving, the occupants are exposed to restricted benefits of a demand-saved environment. One of the reasons is that building systems are usually under centralized management and each occupant cannot choose freely whether to participate in demand response or not. In addition, it is unclear whether incentives give occupants the motivation to participate. However, the recent development of IT and building systems enables the personalized control of the office environment where each occupant can control the lighting level or temperature individually. Therefore, it can be possible to have a system which each occupant can make a decision of whether or not to participate in demand response in the office building. This study investigates personal responses to demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their desk-lights are automatically turned off. The participation rates in the demand response events are compared among four groups, which are divided by different motivation, the presence, or absence of incentives and the method of participation. The result shows that there are significant differences of participation rates in demand response event between four groups. The method of participation has a large effect on the participation rate. The “Opt-out” groups where the occupants are automatically enrolled in a demand response event if they do not express non-participation have the highest participation rate in the four groups. Incentives also have an effect on the participation rate. This study also reports on the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective fatigue symptoms of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.

Keywords: Demand response, illumination, questionnaire, electrocardiograph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
73 Quantitative Analysis of PCA, ICA, LDA and SVM in Face Recognition

Authors: Liton Jude Rozario, Mohammad Reduanul Haque, Md. Ziarul Islam, Mohammad Shorif Uddin

Abstract:

Face recognition is a technique to automatically identify or verify individuals. It receives great attention in identification, authentication, security and many more applications. Diverse methods had been proposed for this purpose and also a lot of comparative studies were performed. However, researchers could not reach unified conclusion. In this paper, we are reporting an extensive quantitative accuracy analysis of four most widely used face recognition algorithms: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) using AT&T, Sheffield and Bangladeshi people face databases under diverse situations such as illumination, alignment and pose variations.

Keywords: PCA, ICA, LDA, SVM, face recognition, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
72 Surface Morphology and Formation of Nanostructured Porous GaN by UV-assisted Electrochemical Etching

Authors: L. S. Chuah, Z. Hassan, C. W. Chin, H. Abu Hassan

Abstract:

This article reports on the studies of porous GaN prepared by ultra-violet (UV) assisted electrochemical etching in a solution of 4:1:1 HF: CH3OH:H2O2 under illumination of an UV lamp with 500 W power for 10, 25 and 35 minutes. The optical properties of porous GaN sample were compared to the corresponding as grown GaN. Porosity induced photoluminescence (PL) intensity enhancement was found in these samples. The resulting porous GaN displays blue shifted PL spectra compared to the as-grown GaN. Appearance of the blue shifted emission is correlated with the development of highly anisotropic structures in the morphology. An estimate of the size of the GaN nanostructure can be obtained with the help of a quantized state effective mass theory.

Keywords: Photoluminescence, porous GaN, electrochemical etching, Si, RF-MBE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934