
 

 

 
 
Abstract—The electromagnetic imaging of inhomogeneous 

dielectric cylinders buried in a slab medium by transverse electric 
(TE) wave illumination is investigated. Dielectric cylinders of 
unknown permittivities are buried in second space and scattered a 
group of unrelated waves incident from first space where the scattered 
field is recorded. By proper arrangement of the various unrelated 
incident fields, the difficulties of ill-posedness and nonlinearity are 
circumvented, and the permittivity distribution can be reconstructed 
through simple matrix operations. The algorithm is based on the 
moment method and the unrelated illumination method. Numerical 
results are given to demonstrate the capability of the inverse 
algorithm. Good reconstruction is obtained even in the presence of 
additive Gaussian random noise in measured data. In addition, the 
effect of noise on the reconstruction result is also investigated. 
 

Keywords—Slab Medium, Unrelated Illumination Method, TE 
Wave Illumination, Inhomogeneous Cylinders.  

I. INTRODUCTION 
N the last few years, inverse scattering problems of objects 
buried in slab medium have been a growing importance in 

many different fields of applied science, with a large potential 
impact on geosciences and remote sensing applications. 
Typical examples are the detection of water pipes buried in the 
wall, power and communication cables buried in the wall, 
archaeological remains and so on. However, the solutions are 
considerably more difficult than those involving objects in free 
space or a half space. This is due to the interaction between the 
air-earth interface and the object, which leads to the 
complicated Green’s function for this three layer problem. 
Most microwave inverse scattering algorithms developed are 
for TM wave illuminations in which the vectorial problem can 
be simplified to a scalar one [1]-[7]. On the other hand, much 
fewer works have been reported on the more complicated TE 
case [8]-[13]. In the TE wave excitation case, the presence of 
polarization charges makes the inverse problem more 
nonlinear. As a result, the reconstruction becomes more 
difficult. However, the TE polarization case is useful because it 
provides additional information about the object. To the best of  
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Fig. 1 Geometry of problem in the (x,y) plane 
 
our knowledge, in TE case, there is still no investigation on the 
inverse scattering of inhomogeneous dielectric cylinders buried 
in a slab medium by unrelated illumination method. 

In this paper, the inverse scattering of inhomogeneous 
dielectric cylinders buried in a slab medium by TE wave 
illumination is investigated. An efficient algorithm is proposed 
to reconstruct the permittivity distribution of the objects by 
using only the scattered field measured outside. The algorithm 
is based on the unrelated illumination method [7], [10], 
[12]-[13]. In Section Ⅱ , the theoretical formulation for 
electromagnetic inverse scattering is presented. Numerical 
results for objects of different permittivity distributions are 
given in Section Ⅲ. Finally, conclusions are drawn in Section 
Ⅳ.  

II. THEORETICAL FORMULATION 
Let us consider dielectric cylinders buried in a lossless 

homogeneous half-space as shown in Fig. 1. Where ( ii σε , ) 

,3,2,1=i denote the permittivities and conductivities in each 
region. The permeability is µ0 for all material including the 
scatterers. The axis of the buried cylinder is the z-axis; that is, 
the properties of the scatterer may vary with the transverse 
coordinates only. A group of unrelated incident wave with 
magnetic field parallel to the z-axis (i.e., transverse electric, or 
TE, polarization) is illuminated upon the scatterers. Owing to 
the interface, the incident plane wave generates three waves 
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that would exist the absence of the conducting object. Let the 
unperturbed field be represented by 
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By using the vector potential techniques, the internal total 
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Here ik  denotes the wave number in region i and rε  is the 
relative permittivity of the dielectric objects. )',';,( yxyxG  is 
the Green’s function, which can be obtained by the Fourier 
transform [2]. For numerical implementation of Green’s 
function, we might face some difficulties in calculating this 
function. This Green’s function is in the form of an improper 
integral, which must be evaluated numerically. However, the 
integral converges very slowly when ),( yx  and )','( yx  
approach the interface ay = . Fortunately we find that the 
integral in sG1 , sG2  and sG3   may be rewritten as a 
closed-form term plus a rapidly converging integral [2]. Thus 
the whole integral in the Green’s function can be calculated 
efficiently. 
    The direct scattering problem is to calculate the scattered 
field sE

v
 in region 1, while the permittivity distribution of the 

buried objects is given. This can be achieved by first solving 
the total field E

v
 in (2) and (3) as well as calculating sE

v
 in (4) 

and (5). For numerical implementation of the direct problem, 
the dielectric objects are dividedinto N sufficient small cells. 
Thus the permittivity and the total field within each cell can be 
taken as constants. Then the moment method is used to solve 
(2)-(5) with a pulse basis function for expansion and point 
matching for testing [17]. Then (2)-(5) can be transformed into 
matrix equations 
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where ( i
xE ) and ( i

yE ) represent the N-element incident field 

column vectors and, ( xE ) and ( yE ) are the N-element total 
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field column vectors. ( s
xE ) and ( s

yE ) denote the M-element 
scattered field column vectors. Here M is the number of 
measurement points. The matrices [G1], [G2], and [G3] are 

NN ×  square matrices. [G4], [G5], and [G5] are NM ×  
matrices. The element in matrices [Gi], i=1, 2, 3…6 can be 
obtained by tedious mathematic manipulation.  [τ] is a NN ×  
diagonal matrix whose diagonal element are formed from the 
permittivities of each cell minus one. [I] is a identity NN ×  
matrix. 
    For the inverse scattering problem, the permittivity 
distribution of the dielectric objects is to be computed by the 
knowledge of the scattered field measured in region 1. In the 
inversion procedure, 2N different incident column vectors are 
used to illuminate the object, the follow equations are obtained:  
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Here ][ i

tE  and ][ tE  are both NN 22 ×  matrices. ][ s
tE  is a 

NM 2×  matrix. It is worth mentioning that other than matrix 
][ 2tG , the matrix ][]][[ 1 ttt IG +τ  is always a well-posed one 

in any case, therefore we can first solve ][ i
tE  in (9) and 

substitute into (10), then [τt] can be found by the following 
equation 

][]][[ ttt Φ=Ψ τ                                                        (11) 
where 

1]][[][ −−=Φ i
t

s
tt EE  
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i
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s
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From (11), all the diagonal elements in the matrix [τ] can be 
determined by comparing the element with the same subscripts 
which may be any row of both ][ tΨ  and ][ tΦ : 

( ) ( )
( ) Nn

mnt

mnt
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Ψ
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or 

( ) ( )
( ) 1,))(( +≥
Ψ
Φ

=−− Nn
mnt

mnt
NnNnτ                      (12b) 

Then the permittivities of each cell can be obtained as follows: 
( ) 1+= nnn τε                                    (13) 

Note that there are a total of 2M possible values for each 
element of τ. Therefore, the average value of these 2M data is 
computed and chosen as final reconstruction result in the 
simulation.   In the above derivation, the key problem is that the 

incident matrices ][ i
tE  must not be a singular matrix, i.e., all 

the incident column vectors that form the ][ i
tE  matrices, must 

be linearly unrelated. Thus, if the object is illuminated by a 
group of unrelated incident waves, it is possible to reconstruct 
the permittivity distribution of the objects. Note that when the 
number of cells becomes very large; it is difficult to make such 
a great number of independent measurements. In such a case, 
some regularization methods must be used to overcome the 
ill-posedness 

III. NUMERICAL RESULTS 
In this section, we report some numerical results obtained by 

computer simulations using the method described in the 
Section Ⅱ . Consider a lossless three- layer structure 
( 0321 === σσσ ) and the width of the second layer is 0.2m. 

The permittivity in each region is characterized by, 01 εε = , 

02 25.2 εε =  and 03 εε =  respectively, as shown in Fig. 1. 
The frequency of the incident wave is chosen to be 3 GHz. The 
incident waves are generated by numerous groups of radiators 
operated simultaneously. 
    Each group of radiators is restricted to transmit a 
narrow-bandwidth pattern that can be implemented by antenna 
array techniques. By changing the beam direction and tuning 
the phase of each group of radiators, one can focus all the 
incident beams in turn at each cell of the object. This procedure 
is named “beam focusing” [7]. Note that this focusing should 
be set when the scatterer is absent. Clearly, an incident matrix 
formed in this way is diagonally dominant and its inverse 
matrix exists. The measurement is taken from 0.4m to -0.4m in 
region 1 at equal spacing. The number of measurement points is 
set to be 9 for each illumination. For avoiding trivial inversion 
of finite dimensional problems, the discretization number for 
the direct problem is four times that for the inverse problem in 
our numerical simulation. 
     A the buried cylinder with a 70 × 21 mm rectangular cross 
section is discretized into 20 × 6 cells, and the corresponding 
dielectric permittivities are plotted in Fig. 2. The model is 
characterized by simple step distribution of permittivity. Each 
cell has 3.5 × 3.5 mm cross-sections. The reconstructed 
permittivity distributions of the object are plotted in Fig. 3. The 
root-mean-square (RMS) error is about 0.9 %. It is apparent 
that the reconstruction is good. For investigating the effect of 
where b and c are independent random numbers having a 
Gaussian distribution over 0 to the noise level times the rms 
value of the scattered field. The noise levels applied include 
10-5, 10-4, 10-3, 10-2, and 10-1 in the simulations. The numerical 
results for the example is plotted in Fig. 4. They show the effect 
of noise is tolerable for noise levels below 1% noise, we add to 
each complex scattered field a quantity b+cj,   

Our method depends on the condition number of ][ i
tE ; that 

is, on having 2N unrelated measurements. The procedure will 
generally not work when the number of unknowns gets very 
large. This is due to the fact that it is difficult to make such a 
great number of measurements and make them all unrelated. As 
a result, the condition number of ][ i

tE  will become large while 
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Fig. 2 Original relative permittivity distribution 

 
 

 
Fig. 3 Reconstructed relative permittivity distribution 
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Fig. 4 Reconstructed error as a function of noise level 

 
the number of unknowns is very large. In such a case, the 
regularization method should be employed to overcome the ill- 
posedness. For instance, the pseudoinverse transform 
techniques [7] can be applied for the inversion of the ][ i

tE  
matrix. 
 

IV.  CONCLUSIONS 
    Imaging algorithm for TE case is more complicated than that 
for the TM case, due to the added difficulties in the polarization 
charges. Nevertheless, the polarization charges cannot be 
ignored for this two-dimensional problem and all 

three-dimensional problems. In this paper, an efficient 
algorithm for reconstructing the permittivity distribution of 
inhomogeneous dielectric cylinders buried in a slab medium, 
illuminated by TE waves, has been proposed. By properly 
arranging the direction of various unrelated waves, the 
difficulty of ill-posedness and nonlinearity is avoided. Thus, 
the permittivity distribution can be obtained by simple matrix 
operations. The moment method has been used to transform a 
set of integral equations into matrix form. Then these matrix 
equations are solved by the unrelated illumination method. 
Numerical simulation for imaging the permittivity distribution 
of an inhomogeneous dielectric cylinder buried in a slab 
medium has been carried out and good reconstruction has been 
obtained even in the presence of Gaussian noise in measured 
data. This algorithm is very effective and efficient, since no 
iteration is required. 
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