Search results for: dynamic tether tension.
2106 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform
Authors: S. Chandrasekaran, P. A. Kiran
Abstract:
Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.Keywords: Offshore platforms, stability, postulated failure, dynamic tether tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9012105 Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves
Authors: Amr R. El-Gamal, Ashraf Essa, Ayman Ismail
Abstract:
The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark’s beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated.
Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.
Keywords: Hydrodynamic wave forces, tension leg platforms, tethers length, wave characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21422104 Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force
Authors: Amr R. El-Gamal, Ashraf Essa, Ayman Ismail
Abstract:
The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy’s linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark’s beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.
Keywords: Tethers tension, tension leg platforms, hydrodynamic wave forces, wave characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29302103 Numerical Analysis on Triceratops Restraining System: Failure Conditions of Tethers
Authors: Srinivasan Chandrasekaran, Manda Hari Venkata Ramachandra Rao
Abstract:
Increase in the oil and gas exploration in ultra deep-water demands an adaptive structural form of the platform. Triceratops has superior motion characteristics compared to that of the Tension Leg Platform and Single Point Anchor Reservoir platforms, which is well established in the literature. Buoyant legs that support the deck are position-restrained to the sea bed using tethers with high axial pretension. Environmental forces that act on the platform induce dynamic tension variations in the tethers, causing the failure of tethers. The present study investigates the dynamic response behavior of the restraining system of the platform under the failure of a single tether of each buoyant leg in high sea states. Using the rain-flow counting algorithm and the Goodman diagram, fatigue damage caused to the tethers is estimated, and the fatigue life is predicted. Results shows that under failure conditions, the fatigue life of the remaining tethers is quite alarmingly low.
Keywords: Fatigue life, Failure analysis, PM spectrum, rain flow counting, triceratops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7502102 Numerical Simulation of Interfacial Flow with Volume-Of-Fluid Method
Authors: Afshin Ahmadi Nadooshan
Abstract:
In this article, various models of surface tension force (CSF, CSS and PCIL) for interfacial flows have been applied to dynamic case and the results were compared. We studied the Kelvin- Helmholtz instabilities, which are produced by shear at the interface between two fluids with different physical properties. The velocity inlet is defined as a sinusoidal perturbation. When gravity and surface tension are taking into account, we observe the development of the Instability for a critic value of the difference of velocity of the both fluids. The VOF Model enables to simulate Kelvin-Helmholtz Instability as dynamic case.
Keywords: Interfacial flow, Incompressible flow, surface tension, Volume-Of-Fluid, Kelvin-Helmholtz.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25622101 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters
Authors: Srinivasan Chandrasekaran, R. Nagavinothini
Abstract:
Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.
Keywords: Buoyant legs, dynamic analysis, offshore structures, preliminary design, random waves, triceratops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10672100 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris
Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini
Abstract:
International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.Keywords: Deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6262099 Analysis of Foaming Flow Instabilities for Dynamic Liquid Saturation in Trickle Bed Reactor
Authors: Vijay Sodhi, Ajay Bansal
Abstract:
The effects of different parameters on the hydrodynamics of trickle bed reactors were discussed for Newtonian and non-Newtonian foaming systems. The varying parameters are varying liquid velocities, gas flow velocities and surface tension. The range for gas velocity is particularly large, thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been used to compare the prediction accuracy of the different trendlines and transition points from the literature. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving dynamic liquid saturation significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, dynamic liquid saturation decreases with higher liquid and gas flow rates considerably in high interaction regime. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, effect was more pronounced with decreases dynamic liquid saturation very sharply during regime transition significantly at both low liquid and gas flow rates.Keywords: Trickle Bed Reactor, Dynamic Liquid Saturation, Foaming, Flow Regime Transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342098 Approximate Tension Buckling Capacity of Thin Edge-Cracked Web Plate Subjected to Pure Bending
Authors: Sebastian B. Mendes
Abstract:
The presence of a vertical edge-crack within a web plate subjected to pure bending induces local compressive stresses about the crack which may cause tension buckling. Approximate theoretical expressions were derived for the critical far-field tensile stress and bending moment capacity of an edge-cracked web plate associated with tension buckling. These expressions were validated with finite element analyses and used to investigate the possibility of tension buckling in web-cracked trial girders. It was found that tension buckling is an unlikely occurrence unless the web is relatively thin or the crack is very long.Keywords: Fatigue crack, tension buckling, Rayleigh-Ritz, structural stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20142097 An Online Mastery Learning Method Based On a Dynamic Formative Evaluation
Authors: Jeongim Kang, Moon Hee Kim, Seong Baeg Kim
Abstract:
This paper proposes a novel e-learning model that is based on a dynamic formative evaluation. On evaluating the existing format of e-learning, conditions regarding repetitive learning to achieve mastery, causes issues for learners to lose tension and become neglectful of learning. The dynamic formative evaluation proposed is able to supplement limitation of the existing approaches. Since a repetitive learning method does not provide a perfect feedback, this paper puts an emphasis on the dynamic formative evaluation that is able to maximize learning achievement. Through the dynamic formative evaluation, the instructor is able to refer to the evaluation result when making an estimation about the learner. To show the flow chart of learning, based on the dynamic formative evaluation, the model proves its effectiveness and validity.
Keywords: Online learning, dynamic formative evaluation, mastery learning, repetitive learning method, learning achievement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17822096 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations
Authors: T. H. Young, S. J. Huang, Y. S. Chiu
Abstract:
This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.Keywords: Axially moving viscoelastic plate, in-plane periodic excitation, non-uniformly distributed edge tension, dynamic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19502095 Evaluation of Tension Capacity of Pile (Case Study in Sandy Soil)
Authors: Shooshpasha I., Kiakojoori M., Mirzagoltabar R. A.
Abstract:
High building constructions are increasing in south beaches of the Caspian Sea because of tourist attractions and limitation of residential areas. According to saturated alluvial fields transfer of load from high structures to the soil by piles is inevitable. In spite of most of these piles are under compression forces, tension piles are used in special conditions. Few studies have been conducted because of the limited use of these piles. Tension capacity of openended pipe piles in full scale was tested in this study. The length of the bored piles was 420 up to 480 cm and all were in 120 cm diameter. The results of testing 7 piles were compared with the results of relations given by researches.Keywords: piles, tension capacity, sand, shaft friction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69822094 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis
Abstract:
In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42962093 Elastic Strain-Concentration Factor of Notched Bars under Combined Loading of Static Tension and Pure Bending
Authors: Hitham M. Tlilan
Abstract:
The effect of notch depth on the elastic new strainconcentration factor (SNCF) of rectangular bars with single edge Unotch under combined loading is studied here. The finite element method (FEM) and super position technique are used in the current study. This new SNCF under combined loading of static tension and pure bending has been defined under triaxial stress state. The employed specimens have constant gross thickness of 16.7 mm and net section thickness varied to give net-to-gross thickness ratio ho/Ho from 0.2 to 0.95. The results indicated that the elastic SNCF for combined loading increases with increasing notch depth up to ho/Ho = 0.7 and sharply decreases with increasing notch depth. It is also indicated that the elastic SNCF of combined loading is greater than that of pure bending and less than that of the static tension for 0.2 ≤ ho/Ho ≤ 0.7. However, the elastic SNCF of combined loading is the elastic SNCF for static tension and less than that of pure bending for shallow notches (i.e. 0.8 ≤ ho/Ho ≤ 0.95).Keywords: Bar, notch, strain, tension, bending
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21672092 Influence of Bra Band Tension and Underwire Angles on Breast Motion
Authors: Cheuk Wing Lee, Kit Lun Yick, Sun Pui Ng, Joanne Yip
Abstract:
Daily activities and exercise may result in large displacements of the breasts, which lead to breast pain and discomfort. Therefore, a proper bra design and fit can help to control excessive breast motion to prevent the over-stretching of the connective tissues. Nevertheless, bra fit problems, such as excessively high tension of the shoulder straps and a tight underband could have substantially negative effects on the wear comfort and health of the wearer. The purpose of this study is to, therefore, examine the effects of bra band tension on breast displacement. Usually, human wear trials are carried out, but there are inconsistencies during testing. Therefore, a soft manikin torso is used to examine breast displacement at walking speeds of 2.30 km/h and 4.08 km/h. The breast displacement itself is determined by using a VICON motion capture system. The 3D geometric changes of the underwire bra band tension and the corresponding control of breast movement are also analyzed by using a 3D handheld scanner along with Rapidform software. The results indicate that an appropriate bra band tension can help to reduce breast displacement and provide a comfortable angle for the underwire. The findings can be used by designers and bra engineers as a reference source to advance bra design and development.
Keywords: Bra band, bra features, breast displacement, underwire angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11252091 The Effects of Aggregate Sizes and Fiber Volume Fraction on Bending Toughness and Direct Tension of Steel Fiber Reinforced Concrete
Authors: Hyun-Woo Cho, Jae-Heum Moon, Jang-Hwa Lee
Abstract:
In order to supplement the brittle property of concrete, fibers are added into concrete mixtures. Compared to general concrete, various characteristics such as tensile strength, bending strength, bending toughness, and resistance to crack are superior, and even when cracks occur, improvements on toughness as well as resistance to shock are excellent due to the growth of fracture energy. Increased function of steel fiber reinforced concrete can be differentiated depending on the fiber dispersion, and sand percentage can be an important influence on the fiber dispersion. Therefore, in this research, experiments were planned on sand percentage in order to apprehend the influence of sand percentage on the bending properties and direct tension of SFRC and basic experiments were conducted on bending and direct tension in order to recognize the properties of bending properties and direct tension following the size of the aggregates and sand percentage.Keywords: Steel Fiber Reinforced Concrete, Bending Toughness, Direct tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16592090 Investigation on the Stability of Rock Slopes Subjected to Tension Cracks via Limit Analysis
Abstract:
Based on the kinematic approach of limit analysis, a full set of upper bound solutions for the stability of homogeneous rock slopes subjected to tension cracks are obtained. The generalized Hoek-Brown failure criterion is employed to describe the non-linear strength envelope of rocks. In this paper, critical failure mechanisms are determined for cracks of known depth but unspecified location, cracks of known location but unknown depth, and cracks of unspecified location and depth. It is shown that there is a nearly up to 50% drop in terms of the stability factors for the rock slopes intersected by a tension crack compared with intact ones. Tables and charts of solutions in dimensionless forms are presented for ease of use by practitioners.
Keywords: Hoek-Brown failure criterion, limit analysis, rock slope, tension cracks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24522089 Numerical Simulation of a Single Air Bubble Rising in Water with Various Models of Surface Tension Force
Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani
Abstract:
Different numerical methods are employed and developed for simulating interfacial flows. A large range of applications belong to this group, e.g. two-phase flows of air bubbles in water or water drops in air. In such problems surface tension effects often play a dominant role. In this paper, various models of surface tension force for interfacial flows, the CSF, CSS, PCIL and SGIP models have been applied to simulate the motion of small air bubbles in water and the results were compared and reviewed. It has been pointed out that by using SGIP or PCIL models, we are able to simulate bubble rise and obtain results in close agreement with the experimental data.
Keywords: Volume-of-Fluid, Bubble Rising, SGIP model, CSS model, CSF model, PCIL model, interface, surface tension force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17842088 Fatigue Analysis of Spread Mooring Line
Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh
Abstract:
Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.
Keywords: Mooring system, fatigue analysis, time domain, non-linear dynamic characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25602087 Characterization of Chemically Modified Biomass as a Coating Material for Controlled Released Urea by Contact Angle Measurement
Authors: Nur Zahirah Zulhaimi, KuZilati KuShaari, Zakaria Man
Abstract:
Controlled release urea has become popular in agricultural industry as it helps to solve environmental issues and increase crop yield. Recently biomass was identified to replace the polymer used as a coating material in the conventional coated urea. In this paper spreading and contact angle of biomass droplet (lignin, cellulose and clay) on urea surface are investigated experimentally. There were two tests were conducted, sessile drop for contact angle measurement and pendant drop for contact angle measurement. A different concentration of biomass droplet was released from 30 mm above a substrate. Glass was used as a controlled substrate. Images were recorded as soon as the droplet impacted onto the urea before completely adsorb into the urea. Digitized droplets were then used to identify the droplet-s surface tension and contact angle. There is large difference observed between the low surface tension and high surface tension liquids, where the wetting and spreading diameter is higher for lower surface tension. From the contact angle results, the data showed that the biomass coating films were possible as wetting liquid (θ < 90º). Contact angle of biomass coating material gives good indication for the wettablity of a liquid on urea surface.
Keywords: Fluid, Dynamics, Droplet, Spreading, Contact Angle, Surface Tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24882086 Screening of Minimal Salt Media for Biosurfactant Production by Bacillus spp.
Authors: Y. M. Al-Wahaibi, S. N. Al-Bahry, A. E. Elshafie, A. S. Al-Bemani, S. J. Joshi, A. K. Al-Bahri
Abstract:
Crude oil is a major source of global energy. The major problem is its widespread use and demand resulted is in increasing environmental pollution. One associated pollution problem is ‘oil spills’. Oil spills can be remediated with the use of chemical dispersants, microbial biodegradation and microbial metabolites such as biosurfactants. Four different minimal salt media for biosurfactant production by Bacillus isolated from oil contaminated sites from Oman were screened. These minimal salt media were supplemented with either glucose or sucrose as a carbon source. Among the isolates, W16 and B30 produced the most active biosurfactants. Isolate W16 produced better biosurfactant than the rest, and reduced surface tension (ST) and interfacial tension (IFT) to 25.26mN/m and 2.29mN/m respectively within 48h which are characteristics for removal of oil in contaminated sites. Biosurfactant was produced in bulk and extracted using acid precipitation method. Thin Layer Chromatography (TLC) of acid precipitate biosurfactant revealed two concentrated bands. Further studies of W16 biosurfactant in bioremediation of oil spills are recommended.
Keywords: Oil contamination, remediation, Bacillus spp, biosurfactant, surface tension, interfacial tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39032085 Study of the Sorption of Biosurfactants from l. Pentosus on Sediments
Authors: Devesa-Rey R., Vecino X., Barral M.T., Cruz J.M., Moldes A.B
Abstract:
Losses of surfactant due to sorption need to be considered when selecting surfactant doses for soil bioremediation. The degree of surfactant sorption onto soil depends primarily on the organic carbon fraction of soil and the chemical nature of the surfactant. The use of biosurfactants in the control of the bioavailability of toxicants in soils is an attractive option because of their biodegradability. In this work biosurfactants were produced from a cheap raw material, trimming vine shoots, employing Lactobacillus pentosus. When biosurfactants from L. pentosus was added to sediments the surface tensión of the water containing the sediments rapidly increase, the same behaviour was observed with the chemical surfactant Tween 20; whereas sodyum dodecyl sulphate (SDS) kept the surface tension of the water around 36 mN/m. It means, that the behaviour of biosurfactants from L. pentosus is more similar to non-ionic surfactatns than to anionic surfactants.Keywords: Biosurfactants, L. pentous, sediments, surface tension
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19182084 High Precision Draw Bending of Asymmetric Channel Section with Restriction Dies and Axial Tension
Authors: Y. Okude, S. Sakaki, S. Yoshihara, B. J. MacDonald
Abstract:
In recent years asymmetric cross section aluminum alloy stock has been finding increasing use in various industrial manufacturing areas such as general structures and automotive components. In these areas, components are generally required to have complex curved configuration and, as such, a bending process is required during manufacture. Undesirable deformation in bending processes such as flattening or wrinkling can easily occur when thin-walled sections are bent. Hence, a thorough understanding of the bending behavior of such sections is needed to prevent these undesirable deformations. In this study, the bending behavior of asymmetric channel section was examined using finite element analysis (FEA). Typical methods of preventing undesirable deformation, such as asymmetric laminated elastic mandrels were included in FEA model of draw bending. Additionally, axial tension was applied to prevent wrinkling. By utilizing the FE simulations effect of restriction dies and axial tension on undesirable deformation during the process was clarified.Keywords: bending, draw bending, asymmetric channel section, restriction dies, axial tension, FEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17192083 Generalization of SGIP Surface Tension Force Model in Three-Dimensional Flows and Compare to Other Models in Interfacial Flows
Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani
Abstract:
In this paper, the two-dimensional stagger grid interface pressure (SGIP) model has been generalized and presented into three-dimensional form. For this purpose, various models of surface tension force for interfacial flows have been investigated and compared with each other. The VOF method has been used for tracking the interface. To show the ability of the SGIP model for three-dimensional flows in comparison with other models, pressure contours, maximum spurious velocities, norm spurious flow velocities and pressure jump error for motionless drop of liquid and bubble of gas are calculated using different models. It has been pointed out that SGIP model in comparison with the CSF, CSS and PCIL models produces the least maximum and norm spurious velocities. Additionally, the new model produces more accurate results in calculating the pressure jumps across the interface for motionless drop of liquid and bubble of gas which is generated in surface tension force. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14132082 Understanding the Nature of Blood Pressure as Metabolic Syndrome Component in Children
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Pediatric overweight and obesity need attention because they may cause morbid obesity, which may develop metabolic syndrome (MetS). Criteria used for the definition of adult MetS cannot be applied for pediatric MetS. Dynamic physiological changes that occur during childhood and adolescence require the evaluation of each parameter based upon age intervals. The aim of this study is to investigate the distribution of blood pressure (BP) values within diverse pediatric age intervals and the possible use and clinical utility of a recently introduced Diagnostic Obesity Notation Model Assessment Tension (DONMA tense) Index derived from systolic BP (SBP) and diastolic BP (DBP) [SBP+DBP/200]. Such a formula may enable a more integrative picture for the assessment of pediatric obesity and MetS due to the use of both SBP and DBP. 554 children, whose ages were between 6-16 years participated in the study; the study population was divided into two groups based upon their ages. The first group comprises 280 cases aged 6-10 years (72-120 months), while those aged 10-16 years (121-192 months) constituted the second group. The values of SBP, DBP and the formula (SBP+DBP/200) covering both were evaluated. Each group was divided into seven subgroups with varying degrees of obesity and MetS criteria. Two clinical definitions of MetS have been described. These groups were MetS3 (children with three major components), and MetS2 (children with two major components). The other groups were morbid obese (MO), obese (OB), overweight (OW), normal (N) and underweight (UW). The children were included into the groups according to the age- and sex-based body mass index (BMI) percentile values tabulated by WHO. Data were evaluated by SPSS version 16 with p < 0.05 as the statistical significance degree. Tension index was evaluated in the groups above and below 10 years of age. This index differed significantly between N and MetS as well as OW and MetS groups (p = 0.001) above 120 months. However, below 120 months, significant differences existed between MetS3 and MetS2 (p = 0.003) as well as MetS3 and MO (p = 0.001). In comparison with the SBP and DBP values, tension index values have enabled more clear-cut separation between the groups. It has been detected that the tension index was capable of discriminating MetS3 from MetS2 in the group, which was composed of children aged 6-10 years. This was not possible in the older group of children. This index was more informative for the first group. This study also confirmed that 130 mm Hg and 85 mm Hg cut-off points for SBP and DBP, respectively, are too high for serving as MetS criteria in children because the mean value for tension index was calculated as 1.00 among MetS children. This finding has shown that much lower cut-off points must be set for SBP and DBP for the diagnosis of pediatric MetS, especially for children under-10 years of age. This index may be recommended to discriminate MO, MetS2 and MetS3 among the 6-10 years of age group, whose MetS diagnosis is problematic.
Keywords: Blood pressure, children, index, metabolic syndrome, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8022081 Efficient CT Image Volume Rendering for Diagnosis
Authors: HaeNa Lee, Sun K. Yoo
Abstract:
Volume rendering is widely used in medical CT image visualization. Applying 3D image visualization to diagnosis application can require accurate volume rendering with high resolution. Interpolation is important in medical image processing applications such as image compression or volume resampling. However, it can distort the original image data because of edge blurring or blocking effects when image enhancement procedures were applied. In this paper, we proposed adaptive tension control method exploiting gradient information to achieve high resolution medical image enhancement in volume visualization, where restored images are similar to original images as much as possible. The experimental results show that the proposed method can improve image quality associated with the adaptive tension control efficacy.Keywords: Tension control, Interpolation, Ray-casting, Medical imaging analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23722080 Numerical Analysis and Experimental Validation of a Downhole Stress/Strain Measurement Tool
Authors: Abhay Bodake, Ping Sui, Hafeez Syed, Ratish Kadam
Abstract:
Real-time measurement of applied forces, like tension, compression, torsion, and bending moment, identifies the transferred energies being applied to the bottomhole assembly (BHA). These forces are highly detrimental to measurement/logging-while-drilling tools and downhole equipment. Real-time measurement of the dynamic downhole behavior, including weight, torque, bending on bit, and vibration, establishes a real-time feedback loop between the downhole drilling system and drilling team at the surface. This paper describes the numerical analysis of the strain data acquired by the measurement tool at different locations on the strain pockets. The strain values obtained by FEA for various loading conditions (tension, compression, torque, and bending moment) are compared against experimental results obtained from an identical experimental setup. Numerical analyses results agree with experimental data within 8% and, therefore, substantiate and validate the FEA model. This FEA model can be used to analyze the combined loading conditions that reflect the actual drilling environment.
Keywords: FEA, M/LWD, Oil & Gas, Strain Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25852079 Dry Needling Treatment in 38 Cases of Chronic Sleep Disturbance
Authors: P. Gao, Z. Q. Li, Y. G. Jin
Abstract:
In the past 10 years, computers and cellphones have become one of the most important factors in our lives, and one which has a tremendously negative impact on our muscles. Muscle tension may be one of the causes of sleep disturbance. Tension in the shoulders and neck can affect blood circulation to the muscles. This research uses a dry needling treatment to reduce muscle tension in order to determine if the strain in the head and shoulders can influence sleep duration. All 38 patients taking part in the testing suffered from tinnitus and have been experiencing disturbed sleep for at least one to five years. Even after undergoing drug therapy treatments and traditional acupuncture therapies, their sleep disturbances have not shown any improvement. After five to 10 dry needling treatments, 24 of the patients reported an improvement in their sleep duration. Five patients considered themselves to be completely recovered, while 12 patients experienced no improvement. This study investigated these pathogenic and therapeutic problems. The standard treatment for sleep disturbances is drug-based therapy; the results of most standard treatments are unfortunately negative. The result of this clinical research has demonstrated that: The possible cause of sleep disturbance for a lot of patients is the result of tensions in the neck and shoulder muscles. Blood circulation to those muscles is also influenced by the duration of sleep. Hypertonic neck and shoulder muscles are considered to impact sleeping patterns and lead to disturbed sleep. Poor posture, often adopted while speaking on the phone, is one of the main causes of hypertonic neck and shoulder muscle problems. The dry needling treatment specifically focuses on the release of muscle tension.
Keywords: Dry needling, sleep disturbance, sleep duration, muscle tension, trigger points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21432078 Analysis of Dynamic Loads Induced by Spectator Movements in Stadium
Authors: Gee-Cheol Kim, Sang-Hoon Lee, Joo-Won Kang
Abstract:
In the stadium structure, the significant dynamic responses such as resonance or similar behavior can be occurred by spectator rhythmical activities. Thus, accurate analysis and precise investigation of stadium structure that is subjected to dynamic loads are required for practical design and serviceability check of stadium structures. Moreover, it is desirable to measure and analyze the dynamic loads of spectator activities because these dynamic loads can not be easily expressed in numerical formula. In this study, various dynamic loads induced by spectator movements are measured and analyzed. These dynamic loads induced by spectators movement of stadium structure can be classified into the impact load and the periodic load. These dynamic loads can be expressed as Fourier harmonic load. And, these dynamic loads could be applied for the accurate vibration analysis of a stadium structure.Keywords: stadium structure, spectator rhythmical activities, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28152077 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening
Authors: X. Wang, J. S. Kuang
Abstract:
The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.
Keywords: Bisection method, fixed-angle softened truss model with tension-stiffening, iterative root-finding technique, reinforced concrete membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827