Search results for: class C
949 Determining the Minimum Threshold for the Functional Relatedness of Inner-Outer Class
Authors: Sim Hui Tee, Rodziah Atan, Abdul Azim Abd Ghani
Abstract:
Inner class is a specialized class that defined within a regular outer class. It is used in some programming languages such as Java to carry out the task which is related to its outer class. The functional relatedness between inner class and outer class is always the main concern of defining an inner class. However, excessive use of inner class could sabotage the class cohesiveness. In addition, excessive inner class leads to the difficulty of software maintenance and comprehension. Our research aims at determining the minimum threshold for the functional relatedness of inner-outer class. Such minimum threshold is a guideline for removing or relocating the excessive inner class. Our research provides a feasible way for software developers to define inner classes which are functionally related to the outer class.Keywords: Cohesion, functional relatedness of inner-outer class, inner class.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587948 Empirical Exploration for the Correlation between Class Object-Oriented Connectivity-Based Cohesion and Coupling
Authors: Jehad Al Dallal
Abstract:
Attributes and methods are the basic contents of an object-oriented class. The connectivity among these class members and the relationship between the class and other classes play an important role in determining the quality of an object-oriented system. Class cohesion evaluates the degree of relatedness of class attributes and methods, whereas class coupling refers to the degree to which a class is related to other classes. Researchers have proposed several class cohesion and class coupling measures. However, the correlation between class coupling and class cohesion measures has not been thoroughly studied. In this paper, using classes of three open-source Java systems, we empirically investigate the correlation between several measures of connectivity-based class cohesion and coupling. Four connectivity-based cohesion measures and eight coupling measures are considered in the empirical study. The empirical study results show that class connectivity-based cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation depends highly on the cohesion and coupling measurement approaches.
Keywords: Object-oriented class, software quality, class cohesion measure, class coupling measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390947 A Design-Based Cohesion Metric for Object-Oriented Classes
Authors: Jehad Al Dallal
Abstract:
Class cohesion is an important object-oriented software quality attribute. It indicates how much the members in a class are related. Assessing the class cohesion and improving the class quality accordingly during the object-oriented design phase allows for cheaper management of the later phases. In this paper, the notion of distance between pairs of methods and pairs of attribute types in a class is introduced and used as a basis for introducing a novel class cohesion metric. The metric considers the methodmethod, attribute-attribute, and attribute-method direct interactions. It is shown that the metric gives more sensitive values than other well-known design-based class cohesion metrics.Keywords: Object-oriented software quality, object-orienteddesign, class cohesion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268946 Decomposition Method for Neural Multiclass Classification Problem
Authors: H. El Ayech, A. Trabelsi
Abstract:
In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572945 Class Outliers Mining: Distance-Based Approach
Authors: Nabil M. Hewahi, Motaz K. Saad
Abstract:
In large datasets, identifying exceptional or rare cases with respect to a group of similar cases is considered very significant problem. The traditional problem (Outlier Mining) is to find exception or rare cases in a dataset irrespective of the class label of these cases, they are considered rare events with respect to the whole dataset. In this research, we pose the problem that is Class Outliers Mining and a method to find out those outliers. The general definition of this problem is “given a set of observations with class labels, find those that arouse suspicions, taking into account the class labels". We introduce a novel definition of Outlier that is Class Outlier, and propose the Class Outlier Factor (COF) which measures the degree of being a Class Outlier for a data object. Our work includes a proposal of a new algorithm towards mining of the Class Outliers, presenting experimental results applied on various domains of real world datasets and finally a comparison study with other related methods is performed.Keywords: Class Outliers, Distance-Based Approach, Outliers Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3388944 A New Weighted LDA Method in Comparison to Some Versions of LDA
Authors: Delaram Jarchi, Reza Boostani
Abstract:
Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523943 Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology
Authors: Renbin Dai, Rana Arslan Ali Khan
Abstract:
The design of Class A and Class AB 2-stage X band Power Amplifier is described in this report. This power amplifier is part of a transceiver used in radar for monitoring iron characteristics in a blast furnace. The circuit was designed using foundry WIN Semiconductors. The specification requires 15dB gain in the linear region, VSWR nearly 1 at input as well as at the output, an output power of 10 dBm and good stable performance in the band 10.9-12.2 GHz. The design was implemented by using inter-stage configuration, the Class A amplifier was chosen for driver stage i.e. the first amplifier focusing on the gain and the output amplifier conducted at Class AB with more emphasis on output power.Keywords: Power amplifier, Class AB, Class A, MMIC, 2-stage, X band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962942 Applications for Accounting of Inherited Object-Oriented Class Members
Authors: Jehad Al Dallal
Abstract:
A class in an Object-Oriented (OO) system is the basic unit of design, and it encapsulates a set of attributes and methods. In OO systems, instead of redefining the attributes and methods that are included in other classes, a class can inherit these attributes and methods and only implement its unique attributes and methods, which results in reducing code redundancy and improving code testability and maintainability. Such mechanism is called Class Inheritance. However, some software engineering applications may require accounting for all the inherited class members (i.e., attributes and methods). This paper explains how to account for inherited class members and discusses the software engineering applications that require such consideration.
Keywords: Object-oriented design, inheritance, internal quality attribute, external quality attribute, class flattening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354941 Attribute Weighted Class Complexity: A New Metric for Measuring Cognitive Complexity of OO Systems
Authors: Dr. L. Arockiam, A. Aloysius
Abstract:
In general, class complexity is measured based on any one of these factors such as Line of Codes (LOC), Functional points (FP), Number of Methods (NOM), Number of Attributes (NOA) and so on. There are several new techniques, methods and metrics with the different factors that are to be developed by the researchers for calculating the complexity of the class in Object Oriented (OO) software. Earlier, Arockiam et.al has proposed a new complexity measure namely Extended Weighted Class Complexity (EWCC) which is an extension of Weighted Class Complexity which is proposed by Mishra et.al. EWCC is the sum of cognitive weights of attributes and methods of the class and that of the classes derived. In EWCC, a cognitive weight of each attribute is considered to be 1. The main problem in EWCC metric is that, every attribute holds the same value but in general, cognitive load in understanding the different types of attributes cannot be the same. So here, we are proposing a new metric namely Attribute Weighted Class Complexity (AWCC). In AWCC, the cognitive weights have to be assigned for the attributes which are derived from the effort needed to understand their data types. The proposed metric has been proved to be a better measure of complexity of class with attributes through the case studies and experimentsKeywords: Software Complexity, Attribute Weighted Class Complexity, Weighted Class Complexity, Data Type
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121940 On Generalized New Class of Matrix Polynomial Set
Authors: Ghazi S. Kahmmash
Abstract:
New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.
Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253939 Suitability of Class F Flyash for Construction Industry: An Indian Scenario
Authors: M. N. Akhtar, J. N. Akhtar
Abstract:
The present study evaluates the properties of class F fly ash as a replacement of natural materials in civil engineering construction industry. The low-lime flash similar to class F is the prime variety generated in India, although it has significantly smaller volumes of high-lime fly ash as compared to class C. The chemical and physical characterization of the sample is carried out with the number of experimental approaches in order to investigate all relevant features present in the samples. For chemical analysis, elementary quantitative results from point analysis and scanning electron microscopy (SEM)/dispersive spectroscopy (EDS) techniques were used to identify the element images of different fractions. The physical properties found very close to the range of common soils. Furthermore, the fly ash-based bricks were prepared by the same sample of class F fly ash and the results of compressive strength similar to that of Standard Clay Brick Grade 1 available in the local market of India.
Keywords: Flyash, class F, class C, chemical, physical, SEM, EDS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859938 Prospective Class Teachers- Computer Experiences and Computer Attitudes
Authors: L. Deniz
Abstract:
The main purpose of the research is to investigate the computer experiences and computer attitudes of prospective class teachers. The research also investigated the differences between computer attitudes and computer experiences, computer competencies and the influence of genders. Ninety prospective class teachers participated in the research. Computer Attitude Scale- Marmara (CAS-M), and a questionnaire, about their computer experiences, and opinions toward the use of computers in the classroom setting, were administrated. The major findings are as follows: (1) 62% of prospective class teachers have computer at home; (2) 50% of the computer owners have computers less than three years; (3) No significant differences were found between computer attitudes and gender; (4) Differences were found between general computer attitudes and computer liking attitudes of prospective class teachers based on their computer competencies in favor of more competent ones.
Keywords: Computer attitude, computer experience, prospective class teacher
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557937 Novel Approach to Design of a Class-EJ Power Amplifier Using High Power Technology
Authors: F. Rahmani, F. Razaghian, A. R. Kashaninia
Abstract:
This article proposes a new method for application in communication circuit systems that increase efficiency, PAE, output power and gain in the circuit. The proposed method is based on a combination of switching class-E and class-J and has been termed class-EJ. This method was investigated using both theory and simulation to confirm ∼72% PAE and output power of >39dBm. The combination and design of the proposed power amplifier accrues gain of over 15dB in the 2.9 to 3.5GHz frequency bandwidth. This circuit was designed using MOSFET and high power transistors. The loadand source-pull method achieved the best input and output networks using lumped elements. The proposed technique was investigated for fundamental and second harmonics having desirable amplitudes for the output signal.Keywords: Power Amplifier (PA), GaN HEMT, Class-J and Class-E, High Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358936 Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory
Authors: Ping He
Abstract:
This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.Keywords: Partial stabilization, Nonlinear critical systems, Centermanifold theory, Lyapunov function, System reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763935 The Role of Middle Class in Forming of Consumption Habits of Market Institutions among Kazakh Households in Transition Period
Authors: Daurenbek Kuleimenov, Elmira Otar
Abstract:
Market institutions extension within transit societies contributes to constituting the new type of middle class and households livelihood strategies. The middle class households as an example of prosperity in many cases encourage the ordinary ones to do the same economic actions. Therefore, practices of using market institutions by middle class households in transit societies, which are mostly characterized by huge influence of traditional attitudes, can carry habitual features for the whole society. Market institutions consumption habit of the middle class households makes them trendsetters of economic habits of other households while adapting to the market economy. Moreover different social-economic positions of households lead them to different consuming results such as worsening or improving household economy due to indebtedness.
Keywords: Middle class, Households, Market institutions, Transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757934 CLASS, A New Tool for Nuclear Scenarios: Description and First Application
Authors: B. Mouginot, J.B. Clavel, N Thiolliere
Abstract:
The presented work is motivated by a french law regarding nuclear waste management. In order to avoid the limitation coming with the usage of the existing scenario codes, as COSI, VISION or FAMILY, the Core Library for Advance Scenario Simulation (CLASS) is being develop. CLASS is an open source tool, which allows any user to simulate an electronuclear scenario. The main CLASS asset, is the possibility to include any type of reactor, even a complitely new concept, through the generation of its ACSII evolution database. In the present article, the CLASS working basis will be presented as well as a simple exemple in order to show his potentiel. In the considered exemple, the effect of the transmutation will be assessed on Minor Actinide Inventory produced by PWR reactors.
Keywords: Electronuclear scenario, reactor, simulation, nuclear waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683933 Binary Classification Tree with Tuned Observation-based Clustering
Authors: Maythapolnun Athimethphat, Boontarika Lerteerawong
Abstract:
There are several approaches for handling multiclass classification. Aside from one-against-one (OAO) and one-against-all (OAA), hierarchical classification technique is also commonly used. A binary classification tree is a hierarchical classification structure that breaks down a k-class problem into binary sub-problems, each solved by a binary classifier. In each node, a set of classes is divided into two subsets. A good class partition should be able to group similar classes together. Many algorithms measure similarity in term of distance between class centroids. Classes are grouped together by a clustering algorithm when distances between their centroids are small. In this paper, we present a binary classification tree with tuned observation-based clustering (BCT-TOB) that finds a class partition by performing clustering on observations instead of class centroids. A merging step is introduced to merge any insignificant class split. The experiment shows that performance of BCT-TOB is comparable to other algorithms.
Keywords: multiclass classification, hierarchical classification, binary classification tree, clustering, observation-based clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732932 Face Authentication for Access Control based on SVM using Class Characteristics
Authors: SeHun Lim, Sanghoon Kim, Sun-Tae Chung, Seongwon Cho
Abstract:
Face authentication for access control is a face membership authentication which passes the person of the incoming face if he turns out to be one of an enrolled person based on face recognition or rejects if not. Face membership authentication belongs to the two class classification problem where SVM(Support Vector Machine) has been successfully applied and shows better performance compared to the conventional threshold-based classification. However, most of previous SVMs have been trained using image feature vectors extracted from face images of each class member(enrolled class/unenrolled class) so that they are not robust to variations in illuminations, poses, and facial expressions and much affected by changes in member configuration of the enrolled class In this paper, we propose an effective face membership authentication method based on SVM using class discriminating features which represent an incoming face image-s associability with each class distinctively. These class discriminating features are weakly related with image features so that they are less affected by variations in illuminations, poses and facial expression. Through experiments, it is shown that the proposed face membership authentication method performs better than the threshold rule-based or the conventional SVM-based authentication methods and is relatively less affected by changes in member size and membership.Keywords: Face Authentication, Access control, member ship authentication, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508931 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set
Authors: Andreas Theissler, Ian Dear
Abstract:
The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.
Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935930 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents
Authors: Chothmal, Basant Agarwal
Abstract:
Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.Keywords: Feature selection methods, Machine learning, NB, One-class SVM, Sentiment Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3303929 One-Class Support Vector Machines for Protein-Protein Interactions Prediction
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989928 Theoretical Analysis of the Effect of Accounting for Special Methods in Similarity-Based Cohesion Measurement
Authors: Jehad Al Dallal
Abstract:
Class cohesion is an important object-oriented software quality attributes, and it refers to the degree of relatedness of class attributes and methods. Several class cohesion measures are proposed in the literature, and the impact of considering the special methods (i.e., constructors, destructors, and access and delegation methods) in cohesion calculation is not thoroughly theoretically studied for most of them. In this paper, we address this issue for three popular similarity-based class cohesion measures. For each of the considered measures we theoretically study the impact of including or excluding special methods on the values that are obtained by applying the measure. This study is based on analyzing the definitions and formulas that are proposed for the measures. The results show that including/excluding special methods has a considerable effect on the obtained cohesion values and that this effect varies from one measure to another. The study shows the importance of considering the types of methods that have to be accounted for when proposing a similarity-based cohesion measure.
Keywords: Object-oriented class, software quality, class cohesion measure, class cohesion, special methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670927 Theoretical Exploration for the Impact of Accounting for Special Methods in Connectivity-Based Cohesion Measurement
Authors: Jehad Al Dallal
Abstract:
Class cohesion is a key object-oriented software quality attribute that is used to evaluate the degree of relatedness of class attributes and methods. Researchers have proposed several class cohesion measures. However, the effect of considering the special methods (i.e., constructors, destructors, and access and delegation methods) in cohesion calculation is not thoroughly theoretically studied for most of them. In this paper, we address this issue for three popular connectivity-based class cohesion measures. For each of the considered measures we theoretically study the impact of including or excluding special methods on the values that are obtained by applying the measure. This study is based on analyzing the definitions and formulas that are proposed for the measures. The results show that including/excluding special methods has a considerable effect on the obtained cohesion values and that this effect varies from one measure to another. For each of the three connectivity-based measures, the proposed theoretical study recommended excluding the special methods in cohesion measurement.
Keywords: Object-oriented class, software quality, class cohesion measure, class cohesion, special methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696926 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data
Authors: Chi-Lun Liu
Abstract:
Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.
Keywords: Knowledge representation, reasoning, ontology, class diagram, software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042925 Reverse Twin Block with Expansion Screw for Treatment of Skeletal Class III Malocclusion in Growing Patient: Case Report
Authors: Alfrina Marwan, Erna Sulistyawati
Abstract:
Class III malocclusion shows both skeletal and dentoalveolar component. Sketal Class III malocclusion can have variants in different region, maxilla or mandibular. Skeletal Class III malocclusion during growth period is considered to treat to prevent its severity in adulthood. Orthopedics treatment of skeletal Class III malocclusion in growing patient can be treated by using reverse twin block with expansion screw to modify the growth pattern. The objective of this case report was to describe the functional correction of skeletal Class III maloclussion using reverse twin block with expansion screw in growing patient. A patient with concave profile came with a chief complaint of aesthetic problems. The cephalometric analysis showed that patient had skeletal Class III malocclusion (ANB -50, SNA 75º, Wits appraisal -3 mm) with anterior cross bite and deep bite (overjet -3 mm, overbite 6 mm). In this case report, the patient was treated with reverse twin block appliance with expansion screw. After three months of treatment, the skeletal problems have been corrected (ANB -1°), overjet, overbite and aesthetic were improved. Reverse twin block appliance with expansion screw can be used as orthopedics treatment for skeletal Class III malocclusion in growing patient and can improve the aesthetic with great satisfaction which was the main complaint in this patient.
Keywords: Growing patient, maxilla retrognatism, reverse twin blocks, skeletal Class III malocclusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988924 A Survey on Metric of Software Cognitive Complexity for OO design
Authors: A.Aloysius, L. Arockiam
Abstract:
In modern era, the biggest challenge facing the software industry is the upcoming of new technologies. So, the software engineers are gearing up themselves to meet and manage change in large software system. Also they find it difficult to deal with software cognitive complexities. In the last few years many metrics were proposed to measure the cognitive complexity of software. This paper aims at a comprehensive survey of the metric of software cognitive complexity. Some classic and efficient software cognitive complexity metrics, such as Class Complexity (CC), Weighted Class Complexity (WCC), Extended Weighted Class Complexity (EWCC), Class Complexity due to Inheritance (CCI) and Average Complexity of a program due to Inheritance (ACI), are discussed and analyzed. The comparison and the relationship of these metrics of software complexity are also presented.Keywords: Software Metrics, Software Complexity, Cognitive Informatics, Cognitive Complexity, Software measurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3026923 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: Outlier detection, generative adversary networks, semi-supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074922 Performance Evaluation of Prioritized Limited Processor-Sharing System
Authors: Yoshiaki Shikata, Wataru Katagiri, Yoshitaka Takahashi
Abstract:
We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N 3 priority classes.Keywords: PS rule, priority ratio, service-facility capacity, simulation algorithm, sojourn time, performance measures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192921 The Current Status of Middle Class Internet Use in China: An Analysis Based on the Chinese General Social Survey 2015 Data and Semi-Structured Investigation
Authors: Abigail Qian Zhou
Abstract:
In today's China, the well-educated middle class, with stable jobs and above-average income, are the driving force behind its Internet society. Through the analysis of data from the 2015 Chinese General Social Survey and 50 interviewees, this study investigates the current situation of this group’s specific internet usage. The findings of this study demonstrate that daily life among the members of this socioeconomic group is closely tied to the Internet. For Chinese middle class, the Internet is used to socialize and entertain self and others. It is also used to search for and share information as well as to build their identities. The empirical results of this study will provide a reference, supported by factual data, for enterprises seeking to target the Chinese middle class through online marketing efforts.
Keywords: China, internet use, middle class, network behavior, online marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761920 Learning of Class Membership Values by Ellipsoidal Decision Regions
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.
Keywords: Ellipsoid, genetic algorithm, decision regions, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428