Search results for: category learning
2200 Stochastic Learning Algorithms for Modeling Human Category Learning
Authors: Toshihiko Matsuka, James E. Corter
Abstract:
Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16292199 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model
Authors: Yolina A. Petrova, Georgi I. Petkov
Abstract:
The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.
Keywords: Categorization, category learning, role-governed category, analogy-making, cognitive modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6622198 Generalized Exploratory Model of Human Category Learning
Authors: Toshihiko Matsuka
Abstract:
One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13852197 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction
Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova
Abstract:
A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.
Keywords: Analogy-making, categorization, learning of categories, abstraction, hierarchical structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7802196 Emotion Classification by Incremental Association Language Features
Authors: Jheng-Long Wu, Pei-Chann Chang, Shih-Ling Chang, Liang-Chih Yu, Jui-Feng Yeh, Chin-Sheng Yang
Abstract:
The Major Depressive Disorder has been a burden of medical expense in Taiwan as well as the situation around the world. Major Depressive Disorder can be defined into different categories by previous human activities. According to machine learning, we can classify emotion in correct textual language in advance. It can help medical diagnosis to recognize the variance in Major Depressive Disorder automatically. Association language incremental is the characteristic and relationship that can discovery words in sentence. There is an overlapping-category problem for classification. In this paper, we would like to improve the performance in classification in principle of no overlapping-category problems. We present an approach that to discovery words in sentence and it can find in high frequency in the same time and can-t overlap in each category, called Association Language Features by its Category (ALFC). Experimental results show that ALFC distinguish well in Major Depressive Disorder and have better performance. We also compare the approach with baseline and mutual information that use single words alone or correlation measure.Keywords: Association language features, Emotion Classification, Overlap-Category Feature, Nature Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18972195 SEM Image Classification Using CNN Architectures
Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.
Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002194 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20952193 Routing Capability and Blocking Analysis of Dynamic ROADM Optical Networks (Category - II) for Dynamic Traffic
Authors: Indumathi T. S., T. Srinivas, B. Siva Kumar
Abstract:
Reconfigurable optical add/drop multiplexers (ROADMs) can be classified into three categories based on their underlying switching technologies. Category I consists of a single large optical switch; category II is composed of a number of small optical switches aligned in parallel; and category III has a single optical switch and only one wavelength being added/dropped. In this paper, to evaluate the wavelength-routing capability of ROADMs of category-II in dynamic optical networks,the dynamic traffic models are designed based on Bernoulli, Poisson distributions for smooth and regular types of traffic. Through Analytical and Simulation results, the routing power of cat-II of ROADM networks for two traffic models are determined.Keywords: Fully-Reconfigurable Optical Add-Drop Multiplexers (FROADMs), Limited Tunability in Reconfigurable Optical Add-Drop multiplexers (LROADM), Multiplexer/De- Multiplexer (MUX/DEMUX), Reconfigurable Optical Add-Drop Multiplexers (ROADMs), Wavelength Division Multiplexing (WDM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15282192 A Study on Bilingual Semantic Processing: Category Effects and Age Effects
Authors: Lai Yi-Hsiu
Abstract:
The present study addressed the nature of bilingual semantic processing in Mandarin Chinese and Southern Min and examined category effects and age effects. Nineteen bilingual adults of Mandarin Chinese and Southern Min, nine monolingual seniors of Mandarin Chinese, and ten monolingual seniors of Southern Min in Taiwan individually completed two semantic tasks: Picture naming and category fluency tasks. The instruments for the naming task were sixty black-and-white pictures, including thirty-five object pictures and twenty-five action pictures. The category fluency task also consisted of two semantic categories – objects (or nouns) and actions (or verbs). The reaction time for each picture/question was additionally calculated and analyzed. Oral productions in Mandarin Chinese and in Southern Min were compared and discussed to examine the category effects and age effects. The results of the category fluency task indicated that the content of information of these seniors was comparatively deteriorated, and thus they produced a smaller number of semantic-lexical items. Significant group differences were also found in the reaction time results. Category effects were significant for both adults and seniors in the semantic fluency task. The findings of the present study will help characterize the nature of the bilingual semantic processing of adults and seniors, and contribute to the fields of contrastive and corpus linguistics.
Keywords: Bilingual semantic processing, aging, Mandarin Chinese, Southern Min.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12942191 A Systematic Mapping Study on Software Engineering Education
Authors: Bushra Malik, Saad Zafar
Abstract:
Inadequate curriculum for software engineering is considered to be one of the most common software risks. A number of solutions, on improving Software Engineering Education (SEE) have been reported in literature but there is a need to collectively present these solutions at one place. We have performed a mapping study to present a broad view of literature; published on improving the current state of SEE. Our aim is to give academicians, practitioners and researchers an international view of the current state of SEE. Our study has identified 70 primary studies that met our selection criteria, which we further classified and categorized in a well-defined Software Engineering educational framework. We found that the most researched category within the SE educational framework is Innovative Teaching Methods whereas the least amount of research was found in Student Learning and Assessment category. Our future work is to conduct a Systematic Literature Review on SEE.
Keywords: Mapping Study, Software Engineering, Software Engineering Education, Literature Survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31272190 Explanatory of Relationship between Learning Motivation and Learning Performance
Authors: Chih Chin Yang
Abstract:
In this paper, the relationship between learning motivation and learning performance is explored by using exchange theory. The relationship is concluded that external performance can raise learning motivation and then increase learning performance. The internal performance should be not completely neglected and the external performance should be not attached important excessively. The parents need self-study and must be also reeducated. The existing education must be improved in raise of internal performance. The incorrect learning thinking will mislead the students, parents, and educators of next generation, when the students obtain good learning performance in the learning environment with excess stimulants. Over operation of external performance will result abnormal learning thinking and violating learning goal. Learning is not only to obtain performance. Learning quality and learning performance will be limited as without learning motivation. The best learning motivation is, the best learning performance is. The learning for reward is not good for learning performance. Strategies of promoting life-long learning are including the encouraging for learner, establishment of good interaction learning environment, and the advertisement of the merit and the importance of life-long learning, which can let the learner with the correct learning motivation.Keywords: exchange theory, learning motivation, learning performance, learning quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16232189 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning
Authors: Yasaswi Palagummi, Sareh Rowlands
Abstract:
Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GZSL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets - AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.
Keywords: Generalised Zero-shot Learning, Inductive Learning, Shifted-Window Attention, Swin Transformer, Vision Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242188 Supplementary JAVA Programming Course for e-Learning with Small-Group Instruction
Authors: Eiko Takaoka, Yuji Osawa
Abstract:
We have designed and implemented e-Learning materials for a JAVA programming course since 2004 and have found that “normal” students, meaning motivated and capable students, can successfully learn the course material taught in a fully online manner. However, for “weaker” students, meaning those lacking motivation, experience, and/or aptitude, the results have been unsatisfactory, and such students thus fall into the supplementary category. From 2007 to 2008, we offered a face-to-face class with small-group instruction for the weaker students, while we provided the fully online course for the normal students. Consequently, we succeeded in helping the weaker students to overcome their programming phobia and develop the ability to create basic programs.
Keywords: e-learning, JAVA Programming Course, Small-Group Instruction, Supplementary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17402187 OSEME: A Smart Learning Environment for Music Education
Authors: Konstantinos Sofianos, Michael Stefanidakis
Abstract:
Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at anytime, anywhere, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.
Keywords: Intelligent learning systems, e-learning, music education, ontology, semantic web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922186 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.
Keywords: Security, internet of things, cloud computing, Stackelberg security game, machine learning, Naïve Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16512185 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce
Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park
Abstract:
Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.
Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25082184 Towards a Unified Approach of Social Justice: Merging Tradition and Modernity in Public Policy Making in India
Authors: Subramaniam Chandran
Abstract:
This paper explores the social and political imperatives in the sphere of public policy relating to social justice. In India, the colonial legacy and post-colonial social and political pressures sustained the appropriation of 'caste' category in allocating public resources to the backward class of citizens. For several reasons, 'economic' category could not be placed in allocating resources. This paper examines the reasons behind the deliberative exercises and formulating policies and seeks an alternative framework in realizing social justice in terms of a unified category. This attempt can be viewed as a reconciliation of traditional and modern values for a viable alternative in public policy making.
Keywords: Social justice, caste, public policy, communal quota
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342183 Analysis and Categorization of e-Learning Activities Based On Meaningful Learning Characteristics
Authors: Arda Yunianta, Norazah Yusof, Mohd Shahizan Othman, Dewi Octaviani
Abstract:
Learning is the acquisition of new mental schemata, knowledge, abilities and skills which can be used to solve problems potentially more successfully. The learning process is optimum when it is assisted and personalized. Learning is not a single activity, but should involve many possible activities to make learning become meaningful. Many e-learning applications provide facilities to support teaching and learning activities. One way to identify whether the e-learning system is being used by the learners is through the number of hits that can be obtained from the e-learning system's log data. However, we cannot rely solely to the number of hits in order to determine whether learning had occurred meaningfully. This is due to the fact that meaningful learning should engage five characteristics namely active, constructive, intentional, authentic and cooperative. This paper aims to analyze the e-learning activities that is meaningful to learning. By focusing on the meaningful learning characteristics, we match it to the corresponding Moodle e-learning activities. This analysis discovers the activities that have high impact to meaningful learning, as well as activities that are less meaningful. The high impact activities is given high weights since it become important to meaningful learning, while the low impact has less weight and said to be supportive e-learning activities. The result of this analysis helps us categorize which e-learning activities that are meaningful to learning and guide us to measure the effectiveness of e-learning usage.
Keywords: e-learning system, e-learning activity, meaningful learning characteristics, Moodle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31502182 Is E-learning Based On Learning Theories? A Literature Review
Authors: Apostolia Pange, Jenny Pange
Abstract:
E-learning aims to build knowledge and skills in order to enhance the quality of learning. Research has shown that the majority of the e-learning solutions lack in pedagogical background and present some serious deficiencies regarding teaching strategies and content delivery, time and pace management, interface design and preservation of learners- focus. The aim of this review is to approach the design of e-learning solutions with a pedagogical perspective and to present some good practices of e-learning design grounded on the core principles of Learning Theories (LTs).Keywords: design principles, e-learning, Learning Theories
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52292181 E-Learning Experiences of Hong Kong Students
Abstract:
The adoption of e-learning in Hong Kong has been increasing rapidly in the past decade. To understand the e-learning experiences of the students, the School of Professional and Continuing Education of The University of Hong Kong conducted a survey. The survey aimed to collect students- experiences in using learning management system, their perceived e-learning advantages, barriers in e-learning and preferences in new e-learning development. A questionnaire with 84 questions was distributed in mid 2012 and 608 valid responds were received. The analysis results showed that the students found e-learning helpful to their study. They preferred interactive functions and mobile features. Blended learning mode, both face-to-face learning mode integrated with online learning and face-to-face learning mode supplemented with online resources, were preferred by the students. The results of experiences of Hong Kong students in e-learning provided a contemporary reference to the e-learning practitioners to understand the e-learning situation in Asia.Keywords: E-learning, blended learning, learning experience, learning management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17522180 University Students Awareness on M-Learning
Authors: Sahilu Wendeson, Wan Fatimah Bt. Wan Ahmad, Nazleeni Samiha Bt. Haron
Abstract:
Mobile learning (M-learning) is the current technology that is becoming more popular. It uses the current mobile and wireless computing technology to complement the effectiveness of traditional learning process. The objective of this paper is presents a survey from 90 undergraduate students of Universiti Teknologi PETRONAS (UTP), to identify the students- perception on Mlearning. From the results, the students are willing to use M-learning. The acceptance level of the students is high, and the results obtained revealed that the respondents almost accept M-learning as one method of teaching and learning process and also able to improve the educational efficiency by complementing traditional learning in UTP.
Keywords: M-learning, Traditional learning, WirelessTechnology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852179 Mobile Learning Implementation: Students- Perceptions in UTP
Authors: Ahmad Sobri bin Hashim, Wan Fatimah Bt. Wan Ahmad, Rohiza Bt. Ahmad
Abstract:
Mobile Learning (M-Learning) is a new technology which is to enhance current learning practices and activities for all people especially students and academic practitioners UTP is currently, implemented two types of learning styles which are conventional and electronic learning. In order to improve current learning approaches, it is necessary for UTP to implement m-learning in UTP. This paper presents a study on the students- perceptions on mobile utilization in the learning practices in UTP. Besides, this paper also presents a survey that was conducted among 82 students from System Analysis and Design (SAD) course in UTP. The survey includes basic information of mobile devices that have been used by the students, opinions on current learning practices and also the opinions regarding the m-learning implementation in the current learning practices especially in SAD course. Based on the results of the survey, majority of the students are using the mobile devices that can support m-learning environment. Other than that, students also agreed that current learning practices are ineffective and they believe that m-learning utilization can improve the effectiveness of current learning practices.Keywords: m-learning, conventional learning, electronic learning, mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22342178 e/b-Learning Activities and High School Pedagogy
Authors: Rui Antunes
Abstract:
This article presents the implementation of several different e/b-Learning collaborative activities, used to improve the students learning process in an high school Polytechnic Institution. A new learning model arises, based on a combination between face-toface and distance leaning. Learning is now becoming centered with the development of collaborative activities, and its actors (teachers and students) have to be re-socialized to a new e/b-Learning paradigm. Measuring approaches are proposed for this model and results are presented, showing prospective correlation between students learning success and the use of online collaborative activities.Keywords: e/b-Learning, Collaborative Learning, TeachingCommunities, Web-based Courseware
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17062177 Blended Learning through Google Classroom
Authors: Lee Bih Ni
Abstract:
This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.
Keywords: Blended learning, learning app, Google classroom, schools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24662176 The Future of Blended Learning
Authors: Reem A. Alebaikan
Abstract:
The emergence of blended learning has been influenced by the rapid changes in Higher Education within the last few years. However, there is a lack of studies that look into the future of blended learning in the Saudi context. The most likely explanation is that blended learning is relatively new and, with respect to learning in general, under-researched. This study addresses this gap and explores the views of lecturers and students towards the future of blended learning in Saudi Arabia. This study was informed by the interpretive paradigm that appears to be most appropriate to understand and interpret the perceptions of students and instructors towards a new learning environment. While globally there has been considerable research on the perceptions of e-learning and blended learning with its different models, there is plenty of space for further research specifically in the Arab region, and in Saudi Arabia where blended learning is now being introduced.Keywords: blended learning, higher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24182175 The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject
Authors: Pimploi Tirastittam, Suppara Charoenpoom
Abstract:
Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.
Keywords: Blended Learning, Asynchronous Learning, Design, Process Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15552174 E-Learning Management Systems General Framework
Authors: Hamed Fawareh
Abstract:
The recent development in learning technologies leads to emerge many learning management systems (LMS). In this study, we concentrate on the specifications and characteristics of LMSs. Furthermore, this paper emphasizes on the feature of e-learning management systems. The features take on the account main indicators to assist and evaluate the quality of e-learning systems. The proposed indicators based of ten dimensions.
Keywords: E-Learning, System Requirement, Social Requirement, Learning Management System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25222173 Associated Map and Inter-Purchase Time Model for Multiple-Category Products
Authors: Ching-I Chen
Abstract:
The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system.
To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.
Keywords: Multiple-category purchase behavior, inter-purchase time, market basket analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18712172 Development of Multimedia Learning Application for Mastery Learning Style: A Graduated Difficulty Strategy
Authors: Nur Azlina Mohamed Mokmin, Mona Masood
Abstract:
Guided by the theory of learning styles, this study is based on the development of a multimedia learning application for students with mastery learning style. The learning material was developed by applying a graduated difficulty learning strategy. Algebra was chosen as the learning topic for this application. The effectiveness of this application in helping students learn is measured by giving a pre- and post-test. The result shows that students who learn using the learning material that matches their preferred learning style perform better than the students with a non-personalized learning material.
Keywords: Algebraic Fractions, Graduated Difficulty, Mastery Learning Style, Multimedia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26002171 An Evolutionary Statistical Learning Theory
Authors: Sung-Hae Jun, Kyung-Whan Oh
Abstract:
Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778