Search results for: Newton’s law of restitution
100 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves
Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong
Abstract:
Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.Keywords: Newton interpolation, Lagrange interpolation, linear complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61799 New Newton's Method with Third-order Convergence for Solving Nonlinear Equations
Authors: Osama Yusuf Ababneh
Abstract:
For the last years, the variants of the Newton-s method with cubic convergence have become popular iterative methods to find approximate solutions to the roots of non-linear equations. These methods both enjoy cubic convergence at simple roots and do not require the evaluation of second order derivatives. In this paper, we present a new Newton-s method based on contra harmonic mean with cubically convergent. Numerical examples show that the new method can compete with the classical Newton's method.
Keywords: Third-order convergence, non-linear equations, root finding, iterative method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296498 Process of Reprivatization of Agricultural Properties in the Selected European Countries
Authors: Adam Niewiadomski
Abstract:
Political transition of agricultural properties in Poland and the former German Democratic Republic (GDR) after 1989 had to include not only Reprivatization but also the issue of returning the properties in kind to their former owners. Restitution in kind applied in GDR to all forms of ownership which were subject to expropriation between 1933 and 1989 except for properties taken over during Soviet occupation in 1945-49. This issue was one of the flashpoints during the process of ownership changes. Privatization, limited as it was, took place in unequal legal environment where only one group of owners was privileged. Executing restitution in kind created a feeling of uncertainty among potential real estate buyers.Keywords: Reprivatization, agricultural properties, German Democratic Republic, Privatization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133297 Comparison of Newton Raphson and Gauss Seidel Methods for Power Flow Analysis
Authors: H. Abaali, T. Talbi, R.Skouri
Abstract:
This paper presents a comparative study of the Gauss Seidel and Newton-Raphson polar coordinates methods for power flow analysis. The effectiveness of these methods are evaluated and tested through a different IEEE bus test system on the basis of number of iteration, computational time, tolerance value and convergence.
Keywords: Convergence time, Gauss-Seidel Method, Newton-Raphson Method, number of iteration, power flow analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254296 The Application of Homotopy Method In Solving Electrical Circuit Design Problem
Authors: Talib Hashim Hasan
Abstract:
This paper describes simple implementation of homotopy (also called continuation) algorithm for determining the proper resistance of the resistor to dissipate energy at a specified rate of an electric circuit. Homotopy algorithm can be considered as a developing of the classical methods in numerical computing such as Newton-Raphson and fixed point methods. In homoptopy methods, an embedding parameter is used to control the convergence. The method purposed in this work utilizes a special homotopy called Newton homotopy. Numerical example solved in MATLAB is given to show the effectiveness of the purposed methodKeywords: electrical circuit homotopy, methods, MATLAB, Newton homotopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 302995 Iteration Acceleration for Nonlinear Coupled Parabolic-Hyperbolic System
Authors: Xia Cui, Guang-wei Yuan, Jing-yan Yue
Abstract:
A Picard-Newton iteration method is studied to accelerate the numerical solution procedure of a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. The Picard-Newton iteration is designed by adding higher-order terms of small quantity to an existing Picard iteration. The discrete functional analysis and inductive hypothesis reasoning techniques are used to overcome difficulties coming from nonlinearity and coupling, and theoretical analysis is made for the convergence and approximation properties of the iteration scheme. The Picard-Newton iteration has a quadratic convergent ratio, and its solution has second order spatial approximation and first order temporal approximation to the exact solution of the original problem. Numerical tests verify the results of the theoretical analysis, and show the Picard-Newton iteration is more efficient than the Picard iteration.
Keywords: Nonlinearity, iterative acceleration, coupled parabolic hyperbolic system, quadratic convergence, numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155794 Monte Carlo and Biophysics Analysis in a Criminal Trial
Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano
Abstract:
In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.Keywords: Biophysical analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61493 Approximated Solutions of Two-Point Nonlinear Boundary Problem by a Combination of Taylor Series Expansion and Newton Raphson Method
Authors: Chinwendu. B. Eleje, Udechukwu P. Egbuhuzor
Abstract:
One of the difficulties encountered in solving nonlinear Boundary Value Problems (BVP) by many researchers is finding approximated solutions with minimum deviations from the exact solutions without so much rigor and complications. In this paper, we propose an approach to solve a two point BVP which involves a combination of Taylor series expansion method and Newton Raphson method. Furthermore, the fourth and sixth order approximated solutions are obtained and we compare their relative error and rate of convergence to the exact solution. Finally, some numerical simulations are presented to show the behavior of the solution and its derivatives.
Keywords: Newton Raphson method, non-linear boundary value problem, Taylor series approximation, Michaelis-Menten equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32592 Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix
Authors: Nursyarizal Mohd Nor, Ramiah Jegatheesan, Perumal Nallagownden
Abstract:
Newton-Raphson State Estimation method using bus admittance matrix remains as an efficient and most popular method to estimate the state variables. Elements of Jacobian matrix are computed from standard expressions which lack physical significance. In this paper, elements of the state estimation Jacobian matrix are obtained considering the power flow measurements in the network elements. These elements are processed one-by-one and the Jacobian matrix H is updated suitably in a simple manner. The constructed Jacobian matrix H is integrated with Weight Least Square method to estimate the state variables. The suggested procedure is successfully tested on IEEE standard systems.Keywords: State Estimation (SE), Weight Least Square (WLS), Newton-Raphson State Estimation (NRSE), Jacobian matrix H.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246591 A New Method to Solve a Non Linear Differential System
Authors: Seifedine Kadry
Abstract:
In this article, our objective is the analysis of the resolution of non-linear differential systems by combining Newton and Continuation (N-C) method. The iterative numerical methods converge where the initial condition is chosen close to the exact solution. The question of choosing the initial condition is answered by N-C method.
Keywords: Continuation Method, Newton Method, Finite Difference Method, Numerical Analysis and Non-Linear partial Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139090 High Performance Computing Using Out-of- Core Sparse Direct Solvers
Authors: Mandhapati P. Raju, Siddhartha Khaitan
Abstract:
In-core memory requirement is a bottleneck in solving large three dimensional Navier-Stokes finite element problem formulations using sparse direct solvers. Out-of-core solution strategy is a viable alternative to reduce the in-core memory requirements while solving large scale problems. This study evaluates the performance of various out-of-core sequential solvers based on multifrontal or supernodal techniques in the context of finite element formulations for three dimensional problems on a Windows platform. Here three different solvers, HSL_MA78, MUMPS and PARDISO are compared. The performance of these solvers is evaluated on a 64-bit machine with 16GB RAM for finite element formulation of flow through a rectangular channel. It is observed that using out-of-core PARDISO solver, relatively large problems can be solved. The implementation of Newton and modified Newton's iteration is also discussed.Keywords: Out-of-core, PARDISO, MUMPS, Newton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214489 A Contractor Iteration Method Using Eigenpairs for Positive Solutions of Nonlinear Elliptic Equation
Authors: Hailong Zhu, Zhaoxiang Li, Kejun Zhuang
Abstract:
By means of Contractor Iteration Method, we solve and visualize the Lane-Emden(-Fowler) equation Δu + up = 0, in Ω, u = 0, on ∂Ω. It is shown that the present method converges quadratically as Newton’s method and the computation of Contractor Iteration Method is cheaper than the Newton’s method.
Keywords: Positive solutions, newton's method, contractor iteration method, Eigenpairs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137888 An Efficient Method for Solving Multipoint Equation Boundary Value Problems
Authors: Ampon Dhamacharoen, Kanittha Chompuvised
Abstract:
In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178587 Reentry Trajectory Optimization Based on Differential Evolution
Authors: Songtao Chang, Yongji Wang, Lei Liu, Dangjun Zhao
Abstract:
Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.Keywords: reentry vehicle, trajectory optimization, constraint optimal, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173586 Power Flow Control with UPFC in Power Transmission System
Authors: Samina Elyas Mubeen, R. K. Nema, Gayatri Agnihotri
Abstract:
In this paper the performance of unified power flow controller is investigated in controlling the flow of po wer over the transmission line. Voltage sources model is utilized to study the behaviour of the UPFC in regulating the active, reactive power and voltage profile. This model is incorporated in Newton Raphson algorithm for load flow studies. Simultaneous method is employed in which equations of UPFC and the power balance equations of network are combined in to one set of non-linear algebraic equations. It is solved according to the Newton raphson algorithm. Case studies are carried on standard 5 bus network. Simulation is done in Matlab. The result of network with and without using UPFC are compared in terms of active and reactive power flows in the line and active and reactive power flows at the bus to analyze the performance of UPFC.Keywords: Newton-Raphson algorithm, Load flow, Unified power flow controller, Voltage source model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 429085 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations
Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir
Abstract:
A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.
Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594384 A Quadcopter Stability Analysis: A Case Study Using Simulation
Authors: C. S. Bianca Sabrina, N. Egidio Raimundo, L. Alexandre Baratella, C. H. João Paulo
Abstract:
This paper aims to present a study, with the theoretical concepts and applications of the Quadcopter, using the MATLAB simulator. In order to use this tool, the study of the stability of the drone through a Proportional - Integral - Derivative (PID) controller will be presented. After the stability study, some tests are done on the simulator and its results will be presented. From the mathematical model, it is possible to find the Newton-Euler angles, so that it is possible to stabilize the quadcopter in a certain position in the air, starting from the ground. In order to understand the impact of the controllers gain values on the stabilization of the Euler-Newton angles, three conditions will be tested with different controller gain values.
Keywords: Controllers, drones, quadcopter, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106483 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer
Authors: H. Mohammadiun, A. Kianifar, A. Kargar
Abstract:
Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189782 Experimental Investigation of Drying Behavior of Rosehip in a Cyclone-Type Dryer
Authors: Ayse Bicer, Filiz Kar
Abstract:
This paper describes an experimental investigation of the drying behavior and conditions of rosehip in a convective cyclone-type dryer. Drying experiments were conducted at air inlet temperatures of 50, 60 and 70 o C and air velocities of 0.5, 1 and 1.5 ms–1. The parametric values obtained from the experiments were fitted to the Newton mathematical models. Consequently, the drying model developed by Newton model showed good agreement with the data obtained from the experiments. Concluding, it was obtained that; (i) the temperature is the major effect on the drying process, (ii) air velocity has low effect on the drying of rosehip, (iii) the C-vitamin is observed to change according to the temperature, moisture, drying time and flow types. The changing ratio is found to be in the range of 0.70-0.74.Keywords: Rosehip, drying, food quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211981 Cantor Interpolating Spline to Design Electronic Mail Boxes
Authors: Adil Al-Rammahi
Abstract:
Electronic mail is very important in present time. Many researchers work for designing, improving, securing, fasting, goodness and others fields in electronic mail. This paper introduced new algorithm to use Cantor sets and cubic spline interpolating function in the electronic mail design. Cantor sets used as the area (or domain) of the mail, while spline function used for designing formula. The roots of spline function versus Cantor sets used as the controller admin. The roots calculated by the numerical Newton – Raphson's method. The result of this algorithm was promised.
Keywords: Cantor sets, spline, electronic mail design, Newton – Raphson's method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159780 Fermat’s Last Theorem a Simple Demonstration
Authors: Jose William Porras Ferreira
Abstract:
This paper presents two solutions to the Fermat’s Last Theorem (FLT). The first one using some algebraic basis related to the Pythagorean theorem, expression of equations, an analysis of their behavior, when compared with power and power and using " the “Well Ordering Principle” of natural numbers it is demonstrated that in Fermat equation . The second one solution is using the connection between and power through the Pascal’s triangle or Newton’s binomial coefficients, where de Fermat equation do not fulfill the first coefficient, then it is impossible that:
zn=xn+yn for n>2 and (x, y, z) E Z+ - {0}
Keywords: Fermat’s Last Theorem, Pythagorean Theorem, Newton Binomial Coefficients, Pascal’s Triangle, Well Ordering Principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 300279 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations
Authors: N. Ebrahimi, J. Rashidinia
Abstract:
In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.
Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219878 Generalization Kernel for Geopotential Approximation by Harmonic Splines
Authors: Elena Kotevska
Abstract:
This paper presents a generalization kernel for gravitational potential determination by harmonic splines. It was shown in [10] that the gravitational potential can be approximated using a kernel represented as a Newton integral over the real Earth body. On the other side, the theory of geopotential approximation by harmonic splines uses spherically oriented kernels. The purpose of this paper is to show that in the spherical case both kernels have the same type of representation, which leads us to conclusion that it is possible to consider the kernel represented as a Newton integral over the real Earth body as a kind of generalization of spherically harmonic kernels to real geometries.Keywords: Geopotential, Reproducing Kernel, Approximation, Regular Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129777 A Special Algorithm to Approximate the Square Root of Positive Integer
Authors: Hsian Ming Goo
Abstract:
The paper concerns a special approximate algorithm of the square root of the specific positive integer, which is built by the use of the property of positive integer solution of the Pell’s equation, together with using some elementary theorems of matrices, and then takes it to compare with general used the Newton’s method and give a practical numerical example and error analysis; it is unexpected to find its special property: the significant figure of the approximation value of the square root of positive integer will increase one digit by one. It is well useful in some occasions.
Keywords: Special approximate algorithm, square root, Pell’s equation, Newton’s method, error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280276 New Explicit Group Newton's Iterative Methods for the Solutions of Burger's Equation
Authors: Tan K. B., Norhashidah Hj. M. Ali
Abstract:
In this article, we aim to discuss the formulation of two explicit group iterative finite difference methods for time-dependent two dimensional Burger-s problem on a variable mesh. For the non-linear problems, the discretization leads to a non-linear system whose Jacobian is a tridiagonal matrix. We discuss the Newton-s explicit group iterative methods for a general Burger-s equation. The proposed explicit group methods are derived from the standard point and rotated point Crank-Nicolson finite difference schemes. Their computational complexity analysis is discussed. Numerical results are given to justify the feasibility of these two proposed iterative methods.
Keywords: Standard point Crank-Nicolson (CN), Rotated point Crank-Nicolson (RCN), Explicit Group (EG), Explicit Decoupled Group (EDG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160275 Numerical Study of a Class of Nonlinear Partial Differential Equations
Authors: Kholod M. Abu-Alnaja
Abstract:
In this work, we derive two numerical schemes for solving a class of nonlinear partial differential equations. The first method is of second order accuracy in space and time directions, the scheme is unconditionally stable using Von Neumann stability analysis, the scheme produced a nonlinear block system where Newton-s method is used to solve it. The second method is of fourth order accuracy in space and second order in time. The method is unconditionally stable and Newton's method is used to solve the nonlinear block system obtained. The exact single soliton solution and the conserved quantities are used to assess the accuracy and to show the robustness of the schemes. The interaction of two solitary waves for different parameters are also discussed.Keywords: Crank-Nicolson Scheme, Douglas Scheme, Partial Differential Equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145374 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes
Authors: Aymen Laadhari
Abstract:
We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.Keywords: Finite element method, Newton method, level set, Navier-Stokes, inextensible membrane, liquid drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129573 Transmission Pricing based on Voltage Angle Decomposition
Authors: M. Oloomi-Buygi, M. Reza Salehizadeh
Abstract:
In this paper a new approach for transmission pricing is presented. The main idea is voltage angle allocation, i.e. determining the contribution of each contract on the voltage angle of each bus. DC power flow is used to compute a primary solution for angle decomposition. To consider the impacts of system non-linearity on angle decomposition, the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow. Then, the contribution of each contract on power flow of each transmission line is computed based on angle decomposition. Contract-related flows are used as a measure for “extent of use" of transmission network capacity and consequently transmission pricing. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system.Keywords: Deregulation, Power electric markets, Transmission pricing methodologies, decoupled Newton-Raphson power flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166272 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes
Authors: Aymen Laadhari, Gábor Székely
Abstract:
This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.Keywords: Fluid-membrane interaction, stretching, Eulerian, finite element method, Newton, implicit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128671 Representation of Power System for Electromagnetic Transient Calculation
Authors: P. Sowa
Abstract:
The new idea of analyze of power system failure with use of artificial neural network is proposed. An analysis of the possibility of simulating phenomena accompanying system faults and restitution is described. It was indicated that the universal model for the simulation of phenomena in whole analyzed range does not exist. The main classic method of search of optimal structure and parameter identification are described shortly. The example with results of calculation is shown.Keywords: Dynamic equivalents, Network reduction, Neural networks, Power system analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897