Search results for: Lung nodule detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1621

Search results for: Lung nodule detection

1621 Improved Lung Nodule Visualization on Chest Radiographs using Digital Filtering and Contrast Enhancement

Authors: Benjamin Y. M. Kwan, Hon Keung Kwan

Abstract:

Early detection of lung cancer through chest radiography is a widely used method due to its relatively affordable cost. In this paper, an approach to improve lung nodule visualization on chest radiographs is presented. The approach makes use of linear phase high-frequency emphasis filter for digital filtering and histogram equalization for contrast enhancement to achieve improvements. Results obtained indicate that a filtered image can reveal sharper edges and provide more details. Also, contrast enhancement offers a way to further enhance the global (or local) visualization by equalizing the histogram of the pixel values within the whole image (or a region of interest). The work aims to improve lung nodule visualization of chest radiographs to aid detection of lung cancer which is currently the leading cause of cancer deaths worldwide.

Keywords: Chest radiographs, Contrast enhancement, Digital filtering, Lung nodule detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
1620 Segmental and Subsegmental Lung Vessel Segmentation in CTA Images

Authors: H. Özkan

Abstract:

In this paper, a novel and fast algorithm for segmental and subsegmental lung vessel segmentation is introduced using Computed Tomography Angiography images. This process is quite important especially at the detection of pulmonary embolism, lung nodule, and interstitial lung disease. The applied method has been realized at five steps. At the first step, lung segmentation is achieved. At the second one, images are threshold and differences between the images are detected. At the third one, left and right lungs are gathered with the differences which are attained in the second step and Exact Lung Image (ELI) is achieved. At the fourth one, image, which is threshold for vessel, is gathered with the ELI. Lastly, identifying and segmentation of segmental and subsegmental lung vessel have been carried out thanks to image which is obtained in the fourth step. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.

Keywords: Computed tomography angiography (CTA), Computer aided detection (CAD), Lung segmentation, Lung vessel segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
1619 Lung Nodule Detection in CT Scans

Authors: M. Antonelli, G. Frosini, B. Lazzerini, F. Marcelloni

Abstract:

In this paper we describe a computer-aided diagnosis (CAD) system for automated detection of pulmonary nodules in computed-tomography (CT) images. After extracting the pulmonary parenchyma using a combination of image processing techniques, a region growing method is applied to detect nodules based on 3D geometric features. We applied the CAD system to CT scans collected in a screening program for lung cancer detection. Each scan consists of a sequence of about 300 slices stored in DICOM (Digital Imaging and Communications in Medicine) format. All malignant nodules were detected and a low false-positive detection rate was achieved.

Keywords: computer assisted diagnosis, medical imagesegmentation, shape recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
1618 Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer

Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani

Abstract:

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. The CAD (Computer Aided Diagnosis ) of lung CT generally first segment the area of interest (lung) and then analyze the separately obtained area for nodule detection in order to diagnosis the disease. For normal lung, segmentation can be performed by making use of excellent contrast between air and surrounding tissues. However this approach fails when lung is affected by high density pathology. Dense pathologies are present in approximately a fifth of clinical scans, and for computer analysis such as detection and quantification of abnormal areas it is vital that the entire and perfectly lung part of the image is provided and no part, as present in the original image be eradicated. In this paper we have proposed a lung segmentation technique which accurately segment the lung parenchyma from lung CT Scan images. The algorithm was tested against the 25 datasets of different patients received from Ackron Univeristy, USA and AGA Khan Medical University, Karachi, Pakistan.

Keywords: Computer Aided Diagnosis, Medical ImageProcessing, Region Growing, Segmentation, Thresholding,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
1617 Lung Segmentation Algorithm for CAD System in CTA Images

Authors: H. Özkan, O. Osman, S. Şahin, M. M. Atasoy, H. Barutca, A. F. Boz, A. Olsun

Abstract:

In this study, we present a new and fast algorithm for lung segmentation using CTA images. This process is quite important especially at lung vessel segmentation, detection of pulmonary emboly, finding nodules or segmentation of airways. Applied method has been carried out at four steps. At first step, images have been applied optimal threshold. At the second one, the subsegment vessels, which have a place in lung region and which are in small dimension, have been removed. At the third one, identifying and segmentation of lungs and airway edges have been carried out. Lastly, by throwing away the airway, lung segmentation has been presented.

Keywords: Lung segmentation, computed tomography angiography, computer-aided diagnostic system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
1616 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
1615 Effect of Gating Sprue Height on Mechanical Properties of Thin Wall Ductile Iron

Authors: E. F. Ochulor, S. O. Adeosun, S. A. Balogun

Abstract:

Effect of sprue/metal head height on mould filling, microstructure and mechanical properties of TWDI casting is studied. Results show that metal/sprue height of 50 mm is not sufficient to push the melt through the gating channel, but as it is increased from 100-350 mm, proper mould filling is achieved. However at higher heights between 200 mm and 350 mm, defects associated with incomplete solidification, carbide precipitation and turbulent flow are evident. This research shows that superior UTS, hardness, nodularity and nodule count are obtained at 100 mm sprue height.

Keywords: Melt pressure and velocity, nodularity, nodule count, sprue height.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905
1614 Design of the Mathematical Model of the Respiratory System Using Electro-acoustic Analogy

Authors: M. Rozanek, K. Roubik

Abstract:

The article deals with development, design and implementation of a mathematical model of the human respiratory system. The model is designed in order to simulate distribution of important intrapulmonary parameters along the bronchial tree such as pressure amplitude, tidal volume and effect of regional mechanical lung properties upon the efficiency of various ventilatory techniques. Therefore exact agreement of the model structure with the lung anatomical structure is required. The model is based on the lung morphology and electro-acoustic analogy is used to design the model.

Keywords: Model of the respiratory system, total lung impedance, intrapulmonary parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
1613 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation

Authors: Aicha Majda, Abdelhamid El Hassani

Abstract:

Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.

Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
1612 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image

Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei

Abstract:

Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.

Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
1611 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
1610 Carvacrol Attenuates Lung Injury in Rats with Severe Acute Pancreatitis

Authors: Salim Cerig, Fatime Geyikoglu, Pınar Akpulat, Suat Colak, Hasan Turkez, Murat Bakir, Mirkhalil Hosseinigouzdagani, Kubra Koc

Abstract:

This study was designed to evaluate whether carvacrol (CAR) could provide protection against lung injury by acute pancreatitis development. The rats were randomized into groups to receive (I) no therapy; (II) 50 μg/kg cerulein at 1h intervals by four intraperitoneal injections (i.p.); (III) 50, 100 and 200 mg/kg CAR by one i.p.; and (IV) cerulein+CAR after 2h of cerulein injection. 12h later, serum samples were obtained to assess pancreatic function the lipase and amylase values. The animals were euthanized and lung samples were excised. The specimens were stained with hematoxylin-eosin (H&E), periodic acid–Schif (PAS), Mallory's trichrome and amyloid. Additionally, oxidative DNA damage was determined by measuring as increases in 8-hydroxy-deoxyguanosine (8-OH-dG) adducts. The results showed that the serum activity of lipase and amylase in AP rats were significantly reduced after the therapy (p<0.05). We also found that the 100 mg/kg dose of CAR significantly decreased 8-OH-dG levels. Moreover, the severe pathological findings in the lung such as necrosis, inflammation, congestion, fibrosis, and thickened alveolar septum were attenuated in the AP+CAR groups when compared with AP group. Finally, the magnitude of the protective effect on lung is certain, and CAR is an effective therapy for lung injury caused by AP.

Keywords: Antioxidant activity, carvacrol, experimental acute pancreatitis, lung injury, oxidative DNA damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
1609 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1608 Mathematical Model of the Respiratory System – Comparison of the Total Lung Impedance in the Adult and Neonatal Lung

Authors: M. Rozanek, K. Roubik

Abstract:

A mathematical model of the respiratory system is introduced in this study. Geometrical dimensions of the respiratory system were used to compute the acoustic properties of the respiratory system using the electro-acoustic analogy. The effect of the geometrical proportions of the respiratory system is observed in the paper.

Keywords: Electro-acoustic analogy, total lung impedance, mechanical parameters, respiratory system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
1607 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung

Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner

Abstract:

Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.

Keywords: lung cancer, micro arrays, data mining, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
1606 The Effect of Loperamide and Fentanyl on the Distribution Kinetics of Verapamil in the Lung and Brain in Sprague Dawley Rats

Authors: Iman A. Elkiweri, Ph.D, Martha C. Tissot van Patot, Ph.D., Yan Ling Zhang, Ph.D., Uwe Christians, Ph.D., Thomas K. Henthorn, M.D.,

Abstract:

Verapamil has been shown to inhibit fentanyl uptake in vitro and is a potent P-glycoprotein inhibitor. Tissue partitioning of loperamide, a commercially available opioid, is closely controlled by the P-gp efflux transporter. The following studies were designed to evaluate the effect of opioids on verapamil partitioning in the lung and brain, in vivo. Opioid (fentanyl or loperamide) was administered by intravenous infusion to Sprague Dawley rats alone or in combination with verapamil and plasma, with lung and brain tissues were collected at 1, 5, 6, 8, 10 and 60 minutes. Drug dispositions were modeled by recirculatory pharmacokinetic models. Fentanyl slightly increased the verapamil lung (PL) partition coefficient yet decreased the brain (PB) partition coefficient. Furthermore, loperamide significantly increased PLand PB. Fentanyl reduced the verapamil volume of distribution (V1) and verapamil elimination clearance (ClE). Fentanyl decreased verapamil brain partitioning, yet increased verapamil lung partitioning. Also, loperamide increased lung and brain partitioning in vivo. These results suggest that verapamil and fentanyl may be substrates of an unidentified inward transporter in brain tissue and confirm that verapamil and loperamide are substrates of the efflux transporter P-gp.

Keywords: Efflux transporter, elimination clearance, partition coefficient, verapamil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1605 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system that has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the pulmonary lung system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically relevant three-dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue that produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue viscoelasticity and tidal breathing period. 

Keywords: Lung deformation and mechanics, tissue mechanics, viscoelasticity, fluid-structure interactions, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
1604 A Dose Distribution Approach Using Monte Carlo Simulation in Dosimetric Accuracy Calculation for Treating the Lung Tumor

Authors: Md Abdullah Al Mashud, M. Tariquzzaman, M. Jahangir Alam, Tapan Kumar Godder, M. Mahbubur Rahman

Abstract:

This paper presents a Monte Carlo (MC) method-based dose distributions on lung tumor for 6 MV photon beam to improve the dosimetric accuracy for cancer treatment. The polystyrene which is tissue equivalent material to the lung tumor density is used in this research. In the empirical calculations, TRS-398 formalism of IAEA has been used, and the setup was made according to the ICRU recommendations. The research outcomes were compared with the state-of-the-art experimental results. From the experimental results, it is observed that the proposed based approach provides more accurate results and improves the accuracy than the existing approaches. The average %variation between measured and TPS simulated values was obtained 1.337±0.531, which shows a substantial improvement comparing with the state-of-the-art technology.

Keywords: Lung tumor, Monte Carlo, polystyrene, elekta synergy, Monaco Planning System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
1603 The Comprehensive Study Based on Ultrasonic and X-ray Visual Technology for GIS Equipment Detection

Authors: Wei Zhang, Hong Yu, Xian-ping Zhao, Da-da Wang, Fei Xue

Abstract:

For lack of the visualization of the ultrasonic detection method of partial discharge (PD), the ultrasonic detection technology combined with the X-ray visual detection method (UXV) is proposed. The method can conduct qualitative analysis accurately and conduct reliable positioning diagnosis to the internal insulation defects of GIS, and while it could make up the blindness of the X-ray visual detection method and improve the detection rate. In this paper, an experimental model of GIS is used as the trial platform, a variety of insulation defects are set inside the GIS cavity. With the proposed method, the ultrasonic method is used to conduct the preliminary detection, and then the X-ray visual detection is used to locate and diagnose precisely. Therefore, the proposed UXV technology is feasible and practical.

Keywords: GIS, ultrasonic, visual detection, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
1602 Pathomorphological Features of Lungs from Brown Hares Infected with Parasites

Authors: Mariana Panayotova-Pencheva, Anetka Trifonova, Vassilena Dakova

Abstract:

790 lungs from brown hares (Lepus europeus L.) from different regions of Bulgaria were investigated during the period 2009-2017. The parasitological status and pathomorphological features in the lungs were recorded. The following parasite species were established: one nematode - Protostrongylus tauricus (7.59% prevalence), one tapeworm – larva of Taenia pisiformis Cysticercus pisiformis (3.04% prevalence) and one arthropod – larva of Linguatula serrata – Pentastomum dentatum (0.89% prevalence). Macroscopic lesions in the lungs were different depending on the causative agents. The infections with C. pisiformis and P. dentatum were attended with small, mainly superficial changes in the lungs. Protostrongylid infections were connected with different in appearance and burden macroscopic changes. In 77.7%, they were nodular, and in the rest of cases, they diffuse. The consistency of the lesions was compact. In most of the cases, alterations were grey in colour, rarely were dark-red or marble-like. In 91.7% of these cases, they were spread on the apical parts of large lung lobes. In 36.7% middle parts of the large lung lobes, and, in 26.7% small lung lobes, were also affected. The small lung lobes were never independently infected.

Keywords: Cysticercus pisiformis, Lepus europeus, lung lesions, Pentastomum dentatum, Protostrongylus tauricus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
1601 Segmentation of Ascending and Descending Aorta in CTA Images

Authors: H. Özkan

Abstract:

In this study, a new and fast algorithm for Ascending Aorta (AscA) and Descending Aorta (DesA) segmentation is presented using Computed Tomography Angiography images. This process is quite important especially at the detection of aortic plaques, aneurysms, calcification or stenosis. The applied method has been carried out at four steps. At first step, lung segmentation is achieved. At the second one, Mediastinum Region (MR) is detected to use in the segmentation. At the third one, images have been applied optimal threshold and components which are outside of the MR were removed. Lastly, identifying and segmentation of AscA and DesA have been carried out. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.

Keywords: Ascending aorta (AscA), Descending aorta (DesA), Computed tomography angiography (CTA), Computer aided detection (CAD), Segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
1600 Efficient Signal Detection Using QRD-M Based On Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better tradeoff between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, Channel condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
1599 Moving Vehicles Detection Using Automatic Background Extraction

Authors: Saad M. Al-Garni, Adel A. Abdennour

Abstract:

Vehicle detection is the critical step for highway monitoring. In this paper we propose background subtraction and edge detection technique for vehicle detection. This technique uses the advantages of both approaches. The practical applications approved the effectiveness of this method. This method consists of two procedures: First, automatic background extraction procedure, in which the background is extracted automatically from the successive frames; Second vehicles detection procedure, which depend on edge detection and background subtraction. Experimental results show the effective application of this algorithm. Vehicles detection rate was higher than 91%.

Keywords: Image processing, Automatic background extraction, Moving vehicle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
1598 Deficiencies of Lung Segmentation Techniques using CT Scan Images for CAD

Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani

Abstract:

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. This paper presents the problem of inaccurate lung segmentation as observed in algorithms presented by researchers working in the area of medical image analysis. The different lung segmentation techniques have been tested using the dataset of 19 patients consisting of a total of 917 images. We obtained datasets of 11 patients from Ackron University, USA and of 8 patients from AGA Khan Medical University, Pakistan. After testing the algorithms against datasets, the deficiencies of each algorithm have been highlighted.

Keywords: Computer Aided Diagnosis (CAD), MathematicalMorphology, Medical Image Analysis, Region Growing, Segmentation, Thresholding,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
1597 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm

Authors: Mohamed E. Salem Abozaed

Abstract:

Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notching

Keywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
1596 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs

Authors: Kyogun Chang, Yoon Bok Lee

Abstract:

Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.

Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
1595 The Pressure Losses in the Model of Human Lungs

Authors: Michaela Chovancova, Pavel Niedoba

Abstract:

For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.

Keywords: Human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
1594 Efficient STAKCERT KDD Processes in Worm Detection

Authors: Madihah Mohd Saudi, Andrea J Cullen, Mike E Woodward

Abstract:

This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.

Keywords: data mining, incident response, KDD processes, security metrics and worm detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
1593 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer

Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut

Abstract:

Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.

Keywords: Bioinformatics, differentially expressed genes, non-small cell lung cancer, transcriptomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
1592 Awareness for Air Pollution Impacts on Lung Cancer in Southern California: A Pilot Study for Designed Smartphone Application

Authors: M. Mohammed Raoof, A. Enkhtaivan, H. Aljuaid

Abstract:

This study follows the design science research methodology to design and implement a smartphone application artifact. The developed artifact was evaluated through three phases. The System Usability Scale (SUS) metric was used for the evaluation. The designed artifact aims to spread awareness about reducing air pollution, decreasing lung cancer development, and checking the air quality status in Southern California Counties. Participants have been drawn for a pilot study to facilitate awareness of air pollution. The study found that smartphone applications have a beneficial effect on the study’s aims.

Keywords: Air pollution, design science research, indoor air pollution, lung cancer, outdoor air pollution, smartphone application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312