Lung Segmentation Algorithm for CAD System in CTA Images
Authors: H. Özkan, O. Osman, S. Şahin, M. M. Atasoy, H. Barutca, A. F. Boz, A. Olsun
Abstract:
In this study, we present a new and fast algorithm for lung segmentation using CTA images. This process is quite important especially at lung vessel segmentation, detection of pulmonary emboly, finding nodules or segmentation of airways. Applied method has been carried out at four steps. At first step, images have been applied optimal threshold. At the second one, the subsegment vessels, which have a place in lung region and which are in small dimension, have been removed. At the third one, identifying and segmentation of lungs and airway edges have been carried out. Lastly, by throwing away the airway, lung segmentation has been presented.
Keywords: Lung segmentation, computed tomography angiography, computer-aided diagnostic system
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1085171
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009References:
[1] Kiraly A. P., Pichon E., Naidich D. P., and Novak C. L., "Analysis of arterial subtrees affected by pulmonary emboli," in Medical Imaging 2004: Image Processing. Procs of the SPIE, 5370, pp. 1720-1729, May 2004.
[2] Y. Masutani, H. MacMahon, K. Doi, Computerized detection of pulmonary embolism in spiral CT angiography based on volumetric image analysis, IEEE Transactions on Medical Imaging 21 (12) (2002) 1517-1523.
[3] E. Pichon, C.L. Novak, A.P. Kiraly, D.P. Naidich, A novel method for pulmonary emboli visualization from high-resolution CT images, SPIE Medical Imaging 5367 (2004) 2004.
[4] R. Uppaluri, T. Mitsa, M. Sonka, E. Hoffman, and G. McLennan, "Quantification of pulmonary emphysema from lung computed tomography images," Am. J. Respir. Crit. Care Med. 156, 248-254 _1997_.
[5] Y. Xu, M. Sonka, G. McLennan, J. Guo, and E. Hoffman, "MDCTbased 3-D texture classification of emphysema and early smoking related lung pathologies," IEEE Trans. Med. Imaging 25, 464-475 _2006_.
[6] S. Armato III, M. Giger, and H. MacMahon, "Automated detection of lung nodules in CT scans: Preliminary result," Med. Phys. 28, 1552- 1561 _2001_.
[7] Q. Li, F. Li, and K. Doi, "Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier," Acad. Radiol. 15, 165-175 _2008_.
[8] R. Uppaluri, E. Hoffman, M. Sonka, P. Hartley, G. Hunninghake, and G. Mclennan, "Computer recognition of regional lung disease patterns," Am. J. Respir. Crit. Care Med. 160, 648-654 _1999_.
[9] Y. Uchiyama, S. Katsuragawa, H. Abe, J. Shiraishi, F. Li, Q. Li, C. Zhang, K. Suzuki, and K. Doi, "Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography," Med. Phys. 30, 2440-2454 _2003_.
[10] I. Sluimer, P. Waes, M. Viergever, and B. Ginneken, "Computeraided diagnosis in high resolution CT of the lungs," Med. Phys. 30, 3081-3090 _2003_.
[11] I. C. Sluimer, A. M. R. Schilham, M. Prokop, and B. van Ginneken, Computer analysis of computed tomography scans of the lung: a survey, IEEE Transactions on Medical Imaging 25(4), pp. 385-405, (2006).
[12] C. Haider, B. Bartholmai, D. Holmes, J. Camp, and R. Robb, "Quantitative characterization of lung disease," Comput. Med. Imaging Graph. 29, 555-563 _2005_.
[13] I. Sluimer, M. Prokop, and B. Ginneken, "Toward automated segmentation of the pathological lung in CT," IEEE Trans. Med. Imaging 24, 1025-1038 _2005_.
[14] M. Prasad, M. Brown, S. Ahmad, F. Abtin, J. Allen, I. Costa, H. Kim, M. Mcnitt-Gray, and J. Goldin, "Automatic segmentation of lung parenchyma in the presence of disease based on curvature of ribs," Acad. Radiol. 15, 1173-1180 _2008_.