Search results for: Heavy Vehicle
1044 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering
Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli
Abstract:
One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible Gross Vehicle Weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.Keywords: Heavy Vehicle, Road Safety, Vehicle Stability, Lateral Acceleration, Gross Vehicle Weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30901043 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries
Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness
Abstract:
The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. The combined effects of asymmetrical vehicle loading and uneven road surfaces has an effect on pavement dynamic loading. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.
Keywords: Eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581042 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djameleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10431041 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8301040 A Modularized Design for Multi-Drivers Off-Road Vehicle Driving-Line and its Performance Assessment
Authors: Yi Jianjun, Sun Yingce, Hu Diqing, Li Chenggang
Abstract:
Modularized design approach can facilitate the modeling of complex systems and support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Therefore it can improve the design efficiency and simplify the solving complicated problem. Multi-drivers off-road vehicle is comparatively complicated. Driving-line is an important core part to a vehicle; it has a significant contribution to the performance of a vehicle. Multi-driver off-road vehicles have complex driving-line, so its performance is heavily dependent on the driving-line. A typical off-road vehicle-s driving-line system consists of torque converter, transmission, transfer case and driving-axles, which transfer the power, generated by the engine and distribute it effectively to the driving wheels according to the road condition. According to its main function, this paper puts forward a modularized approach for designing and evaluation of vehicle-s driving-line. It can be used to effectively estimate the performance of driving-line during concept design stage. Through appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to the practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-drivers off-road vehicle.Keywords: Heavy-loaded Off-road Vehicle, Power Driving-line, Modularized Design, Performance Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18491039 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles
Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou
Abstract:
The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.
Keywords: Fault detection, feature selection, machine learning, predictive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811038 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities
Authors: M. Mourad, K. Mahmoud
Abstract:
Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.
Keywords: Electrification strategy, hybrid electric vehicle, CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7891037 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine
Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin
Abstract:
A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.
Keywords: Multi-level gear oil, engine oil, viscosity, abrasion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10681036 Vehicle Detection Method using Haar-like Feature on Real Time System
Authors: Sungji Han, Youngjoon Han, Hernsoo Hahn
Abstract:
This paper presents a robust vehicle detection approach using Haar-like feature. It is possible to get a strong edge feature from this Haar-like feature. Therefore it is very effective to remove the shadow of a vehicle on the road. And we can detect the boundary of vehicles accurately. In the paper, the vehicle detection algorithm can be divided into two main steps. One is hypothesis generation, and the other is hypothesis verification. In the first step, it determines vehicle candidates using features such as a shadow, intensity, and vertical edge. And in the second step, it determines whether the candidate is a vehicle or not by using the symmetry of vehicle edge features. In this research, we can get the detection rate over 15 frames per second on our embedded system.
Keywords: vehicle detection, haar-like feauture, single camera, real time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33351035 Catalytic Aquathermolysis of Egyptian Heavy Crude Oil
Authors: S. Desouky, A. Al sabagh , M. Betiha, A. Badawi, A. Ghanem, S. Khalil
Abstract:
Two Amphiphilic catalysts, iron (III) dodecylbenzene sulfonate and nickel (II) dodecylbenzene sulfonate, were synthesized and used in the catalytic aquathermolysis of heavy crude oil to reduce its viscosity. The prepared catalysts exhibited good performance in the aquathermolysis and the viscosity is reduced by ~ 78.9 % for Egyptian heavy crude oil. The chemical and physical properties of heavy oil both before and after reaction were investigated by FT-IR, dynamic viscosity, molecular weight and SARA analysis. The results indicated that the content of resin, asphaltene, average molecular weight and sulfur content of heavy oil is reduced after the catalytic aquathermolysis.
Keywords: Amphiphilic catalyst, Aquathermolysis, Heavy oil, Viscosity reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45211034 IntelligentLogger: A Heavy-Duty Vehicles Fleet Management System Based on IoT and Smart Prediction Techniques
Authors: D. Goustouridis, A. Sideris, I. Sdrolias, G. Loizos, N.-Alexander Tatlas, S. M. Potirakis
Abstract:
Both daily and long-term management of a heavy-duty vehicles and construction machinery fleet is an extremely complicated and hard to solve issue. This is mainly due to the diversity of the fleet vehicles – machinery, which concerns not only the vehicle types, but also their age/efficiency, as well as the fleet volume, which is often of the order of hundreds or even thousands of vehicles/machineries. In the present paper we present “InteligentLogger”, a holistic heavy-duty fleet management system covering a wide range of diverse fleet vehicles. This is based on specifically designed hardware and software for the automated vehicle health status and operational cost monitoring, for smart maintenance. InteligentLogger is characterized by high adaptability that permits to be tailored to practically any heavy-duty vehicle/machinery (of different technologies -modern or legacy- and of dissimilar uses). Contrary to conventional logistic systems, which are characterized by raised operational costs and often errors, InteligentLogger provides a cost-effective and reliable integrated solution for the e-management and e-maintenance of the fleet members. The InteligentLogger system offers the following unique features that guarantee successful heavy-duty vehicles/machineries fleet management: (a) Recording and storage of operating data of motorized construction machinery, in a reliable way and in real time, using specifically designed Internet of Things (IoT) sensor nodes that communicate through the available network infrastructures, e.g., 3G/LTE; (b) Use on any machine, regardless of its age, in a universal way; (c) Flexibility and complete customization both in terms of data collection, integration with 3rd party systems, as well as in terms of processing and drawing conclusions; (d) Validation, error reporting & correction, as well as update of the system’s database; (e) Artificial intelligence (AI) software, for processing information in real time, identifying out-of-normal behavior and generating alerts; (f) A MicroStrategy based enterprise BI, for modeling information and producing reports, dashboards, and alerts focusing on vehicles– machinery optimal usage, as well as maintenance and scraping policies; (g) Modular structure that allows low implementation costs in the basic fully functional version, but offers scalability without requiring a complete system upgrade.
Keywords: E-maintenance, predictive maintenance, IoT sensor nodes, cost optimization, artificial intelligence, heavy-duty vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7691033 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece
Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos
Abstract:
The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.
Keywords: Greece, heavy metals, mining, pollution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5821032 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand
Authors: Sisuwan Kaseamsawat, Sivapan Choo-In
Abstract:
A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS).
The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.
Keywords: Heavy metal, Orchard, Pollution and monitoring, Sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20011031 Tuning for a Small Engine with a Supercharger
Authors: Shinji Kajiwara, Tadamasa Fukuoka
Abstract:
The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.
Keywords: Engine, combustion, cooling system, dry sump system, numerical simulation, power, torque, mechanical supercharger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21251030 Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.)
Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Elitsa N. Kolentsova
Abstract:
Comparative research has been conducted to allow us to determine the accumulation of heavy metals (Pb, Zn and Cd) in the vegetative and reproductive organs of safflower, and to identify the possibility of its growth on soils contaminated by heavy metals and efficacy for phytoremediation. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.1, 0.5, 2.0, and 15 km) from the source of pollution. The contents of heavy metals in plant materials (roots, stems, leaves, seeds) were determined. The quality of safflower oils (heavy metals and fatty acid composition) was also determined. The quantitative measurements were carried out with inductively-coupled plasma (ICP). Safflower is a plant that is tolerant to heavy metals and can be referred to the hyperaccumulators of lead and cadmium and the accumulators of zinc. The plant can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of safflower seeds into oil and the use of the obtained oil will greatly reduce the cost of phytoremediation.
Keywords: Heavy metals, phytoremediation, polluted soils, safflower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13891029 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles
Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis
Abstract:
E-maintenance is a relatively recent concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This is clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification, cellular connectivity, connectivity to the vehicle computer, and connectivity to analog and digital sensors by means of a specially targeted design of expansion board. Specifically, the latter offers a number of adaptability features to cope with the diverse sensor types employed in different vehicles. In standard mode, the IoT sensor node communicates to the data center through cellular network, transmitting all digital/digitized sensor data, IoT device identity and position. Moreover, the proposed IoT sensor node offers connectivity, through WiFi and an appropriate application, to smart phones or tablets allowing the registration of additional vehicle- and driver-specific information and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware.
Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5951028 Calculation of Wave Function at the Origin (WFO) for the Ground State of Doubly Heavy Mesons Based On the Variational Method
Authors: Maryam Momeni Feili, Mahvash Zandy Navgaran
Abstract:
The wave function at the origin is an important quantity in studying many physical problems concerning heavy quarkonia. This is because that it is using for calculating spin state hyperfine splitting and also crucial to evaluating the production and decay amplitude of the heavy quarkonium. In this paper, we present the variational method by using the single-parameter wave function to estimate the WFO for the ground state of heavy mesons.
Keywords: Wave function at the origin, heavy mesons, bound states, variational method, non-relativistic quark model, potential model, trial wave function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971027 Heavy Metal Contamination of the Landscape at the ─¢ubietová Deposit (Slovakia)
Authors: Peter Andráš, Adam Lichý, Jana Rusková, Lenka Matúšková
Abstract:
The heavy metal contamination of the technogenous sediments and soils at the investigated dump-field show irregular planar distribution. Also the heavy metal content in the surface water, drainage water and in the groundwater was studied both in the dry as well as during the rainy periods. The cementation process causes substitution of iron by copper. Natural installation and development of plant species was observed at the old mine waste dumps, specific to the local chemical conditions such as low content of essential nutrients and high content of heavy metals. The individual parts of the plant tissues (roots, branches/stems, leaves/needles, flowers/ fruits) are contaminated by heavy metals and tissues are damaged differently, respectively.Keywords: Contamination, dump-field, heavy metals, plants, sediment, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30811026 The Determination of Heavy Metal in Herb Used in Dusit Community to Develop a Sustainable Quality of Life
Authors: Chinnawat Satsananan
Abstract:
This research aimed to find amount of heavy metal in herb used in Dusit community and compare of heavy metal in each part by quantity in herb and standard determination in Thai herb books to develop a sustainable quality of life, the result of study in 14 herbs do not find sample of heavy metal., by quantity of heavy contamination of 4 kinds: Cd, Co, Fe and Pb have lower than standard of 2 organizations: Thai herb standard, and World Health Organization, from the test 14 herbs have Fe in every part of herbs and all 14 kinds has Fe that is necessary for our health.
Keywords: Herbs Plants, Heavy Metal, Dusit District
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18361025 Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels
Authors: Berk Kılıç, Derin Dalgıç, Ela Mia Sevilla Levi, Ömer Aydın
Abstract:
In this experiment our goal was to remove heavy metals from water. Generally, removing toxic heavy elements: Cu+2, Cr+6 and Fe+3, ions from their aqueous solutions has been determined with different kinds of plants’ peels. However, this study focuses on banana, peach, orange, and potato peels. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 80 h at 80 °C. The peels were washed with NaOH and dried again at 80 °C for 2 days. Once the peels were washed and dried, 0.4 grams were weighed and added to a 200 mL sample of 0.1% heavy metal solution by mass. The mixing process was done via a magnetic stirrer. A sample of each was taken at 15-minute intervals and the level of absorbance change of the solutions was detected using a UV-Vis Spectrophotometer. Among the used waste products, orange showed the best results, followed by banana peel as the most efficient for our purposes. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effectiveness of fruit peels for absorbency.
Keywords: Absorbance, heavy metal, removal of heavy metals, fruit peels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621024 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.
Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14011023 A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G
Authors: Jyong Lin, Shih-Chang Chen, Yu-Tsen Shih, Shi-Huang Chen
Abstract:
This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to transmit the real time vehicle system status. Finally, vehicle status browser could show the remote vehicle status including vehicle speed, engine rpm, battery voltage, engine coolant temperature, and diagnostic trouble codes. According to the experimental results, the proposed system can help fleet managers and car knockers to understand the remote vehicle status. Therefore this system can decrease the time of fleet management and vehicle repair due to the fleet managers and car knockers who find the diagnostic trouble messages in time.Keywords: Diagnostic Trouble Code (DTC), Electronic Control Unit (ECU), Global Position System (GPS), On-Board Diagnostic (OBD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30121022 Pollution Control and Sustainable Urban Transport System - Electric Vehicle
Authors: M.M. Al Emran Hasan, M.Ektesabi, A.Kapoor
Abstract:
Recently electric vehicles are becoming popular as an alternative of conventional fossil fuel vehicles. Conventional Internal Combustion Engine (ICE) vehicle uses fossil fuel which contributing a major part of overall carbon emission in the environment. Carbon and other green house gas emission are responsible for global warming and resulting climate change. It becomes vital to evaluate performance of vehicle based on emission. In this paper an effort has been made to depict the picture of emission caused by vehicle and scenario of Australia has taken into account. Effort has been made to compare the fossil based vehicle with electric vehicle in phases. The study also evaluates advancement in electric vehicle technology, required infrastructure for sustainability and future scope of developments. This paper also includes the evaluation of electric vehicle concept for pollution control and sustainable transport systems in future. This study can be a benchmark for development of electric vehicle as low carbon emission alternative for the cities of tomorrow.Keywords: Electric Vehicle, Fossil Fuel, Internal CombustionEngine, Green House Gas, In wheel motor, Smart grid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241021 A Comprehensive Study on Phytoextractive Potential of Sri Lankan Mustard (Brassica Juncea (L.) Czern. and Coss) Genotypes
Authors: S. Somaratne, S. R. Weerakoon
Abstract:
Heavy metal pollution is an environmental concern. Phytoremediation is a low-cost, environmental-friendly approach to solve this problem. Mustard has the potential in reducing heavy metal contents in soils. Among mustard (Brassica juncea (L.) Czern & Coss) genotypes in Sri Lanka, accessions 7788, 8831 and 5088 give significantly a high yield. Therefore, present study was conducted to quantify the phytoextractive potential among these local mustard accessions and to assess the interaction of heavy metals, Pb, Co, Mn on phytoextraction. A pot experiment was designed with acid washed sand (quartz) and a series of heavy metal solutions of 0, 25, 50, 75 and 100 μg/g. Experiment was carried out with factorial experimental design. Mustard accessions were tolerant to heavy metals and could be successfully used in removal of Pb, Co and Mn and they are capable of accumulating significant quantities of heavy metals in vegetative and reproductive organs. The order of the accumulative potential of Pb, Co and Mn in mustard accessions is, root > shoot >seed.Keywords: Brassica juncea, heavy metal hyper-accumulation, phytoremediation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16961020 Effect of Different Treatments on Heavy Metal Concentration in Sugar Cane Molasses
Authors: Gomaa N. Abdel-Rahman, Nadia R. A. Nassar, Yehia A. Heikal, Mahmoud A. M. Abou-Donia, Mohamed M. Naguib, Mohamed Fadel
Abstract:
Cane molasses is used as a raw material for the production of baker’s yeast (Saccharomyces cerevisiae) in Egypt. The high levels of heavy metals in molasses cause a critical problem during fermentation and cause various kinds of technological difficulties (yield and quality of yeast become lower). The aim of the present study was to determine heavy metal concentrations (cadmium, nickel, lead, and copper) in crude and treated molasses obtained from the storage tanks of the baker’s yeast factory through four seasons. Also, the effect of crude molasses treatment by different methods (at laboratory scale) on heavy metals reduction and its comparison with factory treated molasses were conducted. The molasses samples obtained at autumn season had the highest values of all the studied heavy metals. The molasses treated by cation exchange resin then sulfuric acid had the lowest concentrations of heavy metals compared with other treatments.
Keywords: Molasses, baker’s yeast, heavy metals, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24921019 Definition and Implementation of a Simulation Model for the Physical Layer and the Radio Channel in Dedicated Short Range Communication Systems
Authors: Mounir Frikha, Michael Meincke, Semia Barouni
Abstract:
This paper proposes a vehicle-to-vehicle propagation model implemented with SDL. To estimate the channel characteristics for Inter-Vehicle communication, we first define a predicted propagation pathloss between the moving vehicles under three typical scenarios. A Ray-tracing method is used for the simple gamma model performance.Keywords: Inter-vehicle communication (IVC), propagationmodel, road traffic, road vicinity, pathloss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13521018 Investigation of Phytoextraction Coefficient Different Combination of Heavy Metals in Barley and Alfalfa
Authors: F. Zaefarian, M. Rezvani, F. Rejali, M.R. Ardakani
Abstract:
Two seperate experiments by barley and alfalfa were conducted to a 2×8 factorial completely randomised design, with four replicates. Factors were inoculation (M) with Gomus mosseae or uninoculation (M0) and seven levels of contaminants (Co, Cd, Pb and combinations) plus an uncontaminated control treatment (C). Heavy metals in plant tissues and soil were quantified by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) (Variant- Liberty 150AX Turbo). Phytoextraction coefficient of contaminants calculated by concentration of heavy metals in the shoot (mgkg-1) / concentration of heavy metals in soil (mgkg-1). In the barley, the highest rate of phytoextraction coefficient of Pb, Cd and Co was in M0Pb, M0PbCoCd and MCo, respectively (P<0.05). In the alfalfa plants, the highest phytoextraction coefficient of Cd, Co and Pb obtained in the treatments M0CoCd, M0Co and M0PbCd, respectively.Keywords: phytoextraction coefficient, heavy metals, barley, alfalfa
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031017 Design and Development of a Prototype Vehicle for Shell Eco-Marathon
Authors: S. S. Dol
Abstract:
Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.
Keywords: Energy efficient vehicle, drag force, chassis, powertrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57471016 Neuro-Hybrid Models for Automotive System Identification
Authors: Ventura Assuncao
Abstract:
In automotive systems almost all steps concerning the calibration of several control systems, e.g., low idle governor or boost pressure governor, are made with the vehicle because the timeto- production and cost requirements on the projects do not allow for the vehicle analysis necessary to build reliable models. Here is presented a procedure using parametric and NN (neural network) models that enables the generation of vehicle system models based on normal ECU engine control unit) vehicle measurements. These models are locally valid and permit pre and follow-up calibrations so that, only the final calibrations have to be done with the vehicle.Keywords: Automotive systems, neuro-hybrid models, demodulator, nonlinear systems, identification, and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15701015 The Optimization of an Intelligent Traffic Congestion Level Classification from Motorists- Judgments on Vehicle's Moving Patterns
Authors: Thammasak Thianniwet, Satidchoke Phosaard, Wasan Pattara-Atikom
Abstract:
We proposed a technique to identify road traffic congestion levels from velocity of mobile sensors with high accuracy and consistent with motorists- judgments. The data collection utilized a GPS device, a webcam, and an opinion survey. Human perceptions were used to rate the traffic congestion levels into three levels: light, heavy, and jam. Then the ratings and velocity were fed into a decision tree learning model (J48). We successfully extracted vehicle movement patterns to feed into the learning model using a sliding windows technique. The parameters capturing the vehicle moving patterns and the windows size were heuristically optimized. The model achieved accuracy as high as 99.68%. By implementing the model on the existing traffic report systems, the reports will cover comprehensive areas. The proposed method can be applied to any parts of the world.Keywords: intelligent transportation system (ITS), traffic congestion level, human judgment, decision tree (J48), geographic positioning system (GPS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821