Search results for: x-ray crystal structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4634

Search results for: x-ray crystal structures

4424 Electro-Optic Parameters of Ferroelectric Particles- Liquid Crystal Composites

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

Influence of barium titanate particles on electro-optic properties of liquid crystal 4-cyano-4′-pentylbiphenyl (5CB) with positive dielectric anisotropy and the liquid crystalline (LC) mixture Н-37 consisting of 4-methoxybezylidene-4'–butylaniline and 4-ethoxybezylidene-4'–butylaniline with negative dielectric anisotropy was investigated. It was shown that a presence of particles inside 5СВ and H-37 decreased the clearing temperature from 35.2 °С to 32.5°С and from 61.2 oC to 60.1oC, correspondingly. The threshold voltage of the Fredericksz effect became 0.3 V for the BaTiO3-5CB colloid while the beginning of this effect of the pure 5СВ was observed at 2.1 V. Threshold voltage of the Fredericksz effect increased from 2.8 V to up 3.1 V at additive of particles into H-37. A rise time of the BaTiO3-5CB colloid improved while a decay time worsened in comparison with the pure 5CB at all applied voltages. The inverse trends were observed for the H-37 matrix, namely, a rise time worsened and a decay time improved. Among other things, the effect of fast light modulation was studied at application of the rectangular impulse with direct bias to an electro-optical cell with the BaTiO3 particles+5CB and the pure 5CB. At this case, a rise time of the composite worsened, a decay time improved in comparison with the pure 5CB. The pecularities of electrohydrodynamic instability (EHDI) formation was also investigated into the composite with the H-37 matrix. It was found that the voltage of the EHDI formation decreased, a rise time increased and a decay time decreased in comparison with the pure H-37. First of all, experimental results are explained by appearance of local electric fields near the polarized ferroelectric particles at application of external electric field and an existence of the additional obstacles (particles) for movement of ions.

Keywords: liquid crystal, ferroelectric particles, composite, electro-optics

Procedia PDF Downloads 679
4423 Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Thore Magath, Ekmel Ozbay

Abstract:

Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 237
4422 Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies

Authors: M. Jerold, V. Sivasubramanian

Abstract:

In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.

Keywords: algae, biosorption, zero-valent, dye, wastewater

Procedia PDF Downloads 155
4421 Temporal Characteristics of Human Perception to Significant Variation of Block Structures

Authors: Kuo-Cheng Liu

Abstract:

In the latest research efforts, the structures of the image in the spatial domain have been successfully analyzed and proved to deduce the visual masking for accurately estimating the visibility thresholds of the image. If the structural properties of the video sequence in the temporal domain are taken into account to estimate the temporal masking, the improvement and enhancement of the as-sessing spatio-temporal visibility thresholds are reasonably expected. In this paper, the temporal characteristics of human perception to the change in block structures on the time axis are analyzed. The temporal characteristics of human perception are represented in terms of the significant variation in block structures for the analysis of human visual system (HVS). Herein, the block structure in each frame is computed by combined the pattern masking and the contrast masking simultaneously. The contrast masking always overestimates the visibility thresholds of edge regions and underestimates that of texture regions, while the pattern masking is weak on a uniform background and is strong on the complex background with spatial patterns. Under considering the significant variation of block structures between successive frames, we extend the block structures of images in the spatial domain to that of video sequences in the temporal domain to analyze the relation between the inter-frame variation of structures and the temporal masking. Meanwhile, the subjective viewing test and the fair rating process are designed to evaluate the consistency of the temporal characteristics with the HVS under a specified viewing condition.

Keywords: temporal characteristic, block structure, pattern masking, contrast masking

Procedia PDF Downloads 385
4420 Economic and Environmental Benefits of the Indium Recycling from the Waste Liquid Crystal Displays in China

Authors: Wu Yufeng, Gu Yifan, Wang Hengguang, Gongyu, Zuo Tieyong

Abstract:

Indium is one the scarce resources which can be only used less than 30 years, and more than 70% of the indium is used for the production of the LCD. The benefit of recycling Indium from waste LCD is large. Take the LCD-TV for example, the yield of which was close to 90 million units in 2010. If it was available to recycle the indium effectively, the yield of the secondary-indium could reach up to 110 metric ton, which accounted for one third of the primary indium production in China. And compared with the dispersion and long process extraction of the primary indium resources, secondary indium concentrates in the waste LCD, the exploitation has great economic and environmental benefits. However, the potential benefits were indefinite, resulting in China’s government did not pay enough attention to the indium recycling industry. In our study, an estimation model was constructed to analyze the potential of the indium in the waste LCD. The different types of LCD were detected to find out the content of indium. Then, the potential of the indium in the waste LCD was estimated in China. Furthermore, the pollution emissions of the product process of the primary and secondary indium was analyzed respectively to calculate the economic and environmental benefits of the indium recycling from the waste LCD in China.

Keywords: indium recycling, waste liquid crystal displays, benefits, China

Procedia PDF Downloads 393
4419 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED

Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue

Abstract:

Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).

Keywords: MgO, UV LED, ZnMgO, ZnO

Procedia PDF Downloads 386
4418 Environmental Impacts on the British Era Structures of Faisalabad-a Detailed Study of the Clock Tower of Faisalabad

Authors: Bazla Manzoor, Aqsa Yasin

Abstract:

Pakistan is the country which is progressing by leaps and bounds through agricultural and industrial growth. The main area, which presents the largest income rate through industrial activities, is Faisalabad from the Province of Punjab. Faisalabad’s main occupations include agriculture and industry. As these sectors i.e. agriculture and industry is developing day by day, they are earning much income for the country and generating thousands of job vacancies. On one hand the city, i.e. Faisalabad is on the way of development through industrial growth, while on the other hand this industrial growth is producing a bad impact on the environment. In return, that damaged environment is affecting badly on the people and built environment. This research is chiefly based on one of the above-mentioned factors i.e. adverse environmental impacts on the built structures. Faisalabad is an old city, therefore; it is having many old structures especially from British Era. Many of those structures are still surviving and are functioning as the government, private and public buildings. However, these structures are getting in a poor condition with the passage of time due to bad maintenance and adverse environmental impacts. Bad maintenance is a factor, which can be controlled by financial assistance and management. The factor needs to be seriously considered is the other one i.e. adverse environmental impacts on British Era structures of the city because this factor requires controlled and refined human activities and actions. For this reason, a research was required to conserve the British Era structures of Faisalabad so that these structures can function well. The other reason to conserve them is that these structures are historically important and are the heritage of the city. For doing this research, literature has been reviewed which was present in the libraries of the city. Department of Environment, Town Municipal Administration, Faisalabad Development Authority and Lyallpur Heritage Foundation were visited to collect the existing data available. Various British Era structures were also visited to note down the environmental impacts on them. From all the structures “Clock Tower,” was deeply studied as it is one of the oldest and most important heritage structures of the city because the earlier settlements of the city were planned based on its location by The British Government. The architectural and environmental analyses were done for The Clock Tower. This research study found the deterioration factors of the tower according to which suggestions have been made.

Keywords: lyallpur, heritage, architecture, environment

Procedia PDF Downloads 276
4417 Cr³⁺/SiO₄⁴⁻ Codoped Hydroxyapatite Nanorods: Fabrication and Microstructure Analysis

Authors: Ammar Z. Alshemary, Zafer Evis

Abstract:

In this study, nanorods of Cr³⁺/SiO₄⁴⁻ codoped hydroxyapatite (Cr³⁺/SiO₄⁴⁻-HA) were synthesized successfully and rapidly through microwave irradiation technique, using (Ca(NO₃)₂•4H₂O), ((NH₄)₂HPO₄), (SiC₈H₂₀O₄) and (Cr(NO₃)₃.9H₂O) as source materials for Ca²⁺, PO₄³⁻, SiO₄⁴⁻ and Cr³⁺ ions, respectively. The impact of dopants on the phase formation and microstructure of the powders were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrum analysis (FT-IR) and Field emission electron microscopy (FESEM) techniques. XRD analysis showed that with an incorporation of Cr³⁺/SiO₄⁴⁻ ions into HA structure resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. FTIR spectroscopy revealed the existence of the different vibrational modes matching to phosphates and hydroxyl groups. The FESEM analysis showed a change in the crystal shape from spherical to rod shaped particles upon Cr³⁺ doping into the crystal structure. Acknowledgments: This study was supported by Karabük University (Project no. KBÜBAP-17-YD-144). The authors would like to thank for support.

Keywords: nano-hydroxyapatite, microwave, dopants, characterization, microstructure

Procedia PDF Downloads 199
4416 Study the Dynamic Behavior of Irregular Buildings by the Analysis Method Accelerogram

Authors: Beciri Mohamed Walid

Abstract:

Some architectural conditions required some shapes often lead to an irregular distribution of masses, rigidities and resistances. The main object of the present study consists in estimating the influence of the irregularity both in plan and in elevation which presenting some structures on the dynamic characteristics and his influence on the behavior of this structures. To do this, it is necessary to make apply both dynamic methods proposed by the RPA99 (spectral modal method and method of analysis by accelerogram) on certain similar prototypes and to analyze the parameters measuring the answer of these structures and to proceed to a comparison of the results.

Keywords: structure, irregular, code, seismic, method, force, period

Procedia PDF Downloads 283
4415 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining

Procedia PDF Downloads 435
4414 Why Do We Need Hierachical Linear Models?

Authors: Mustafa Aydın, Ali Murat Sunbul

Abstract:

Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.

Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure

Procedia PDF Downloads 632
4413 Implementing 3D Printed Structures as the Newest Textile Form

Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın

Abstract:

From the oldest production methods with yarns used to weave, knit, braid and knot to the newest production methods with fibres used to stitch, bond or structures of innovative technologies, laminates, nanoparticles, composites or 3D printing systems, textile industry advanced through materials, processes and context mostly within the last five decades. The creative momentum of fabric like 3D printed structures have come to the point of transforming as for the newest form of textile applications. Moreover, pioneering studies on the applications of 3D Printing Technology and Additive Manufacturing have been focusing on fashion and apparel sector from the last two decades beginning with fashion designers. After the advent of chain-mail like structures and flexible micro or meso structures created by SLS rapid manufacturing a more textile-like behavior is achieved. Thus, the primary aim of this paper is to discuss the most important properties of traditional fabrics that are to be expected of future fabrics. For this reason, this study deals primarily with the physical properties like softness, hand, flexibility, drapability and wearability of 3D Printed structures necessary to identify the possible ways in which it can be used instead of contemporary textile structures, namely knitted and woven fabrics. The aim of this study is to compare the physical properties of 3D printed fabrics regarding different rapid manufacturing methods (FDM and SLS). The implemented method was Material Driven Design (MDD), which comprise the use of innovative materials according to the production techniques such as 3D printing system. As a result, advanced textile processes and materials enable to the creation of new types of fabric structures and rapid solutions in the field of textiles and 3D fabrics on the other hand, are to be used in this regard.

Keywords: 3D printing technology, FDM, SLS, textile structure

Procedia PDF Downloads 306
4412 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: inelastic behavior, non-linear dynamic analysis, steel structure, vertical component

Procedia PDF Downloads 289
4411 Analysis and Design of Irregular Large Cantilever Structure of Statue

Authors: Pan Rui, Ma Jun, Zhao Caiqi, Wang Guangda

Abstract:

With the development of the tourism and religion,more and more large statue structures are adopted to build all over the world.For instance,the GuanYin statue with three plane reaches 108 meters high in HaiNan province in China.These statue structures belong to typical high-rise Building. However,the geometry sculpt of statues are complicated .The irregular shape makes these structures more complicated in force analysis than those normal standard tall buildings.In this paper,the Liu Bang Statue which is located at XuZhou in China.

Keywords: large statue structure, special-shaped steel, GuanYin statue, China

Procedia PDF Downloads 371
4410 Sensitivity Enhancement of Photonic Crystal Fiber Biosensor

Authors: Mohamed Farhat O. Hameed, Yasamin K. A. Alrayk, A. A Shaalan, S. S. A. Obayya

Abstract:

The surface plasmon resonance (SPR) sensors are widely used due to its high sensitivity with molecular labels free. The commercial SPR sensors depend on the conventional prism-coupled configuration. However, this type of configuration suffers from miniaturization and integration. Therefore, the search for compact, portable and highly sensitive SPR sensors becomes mandatory.In this paper, sensitivity enhancement of a novel photonic crystal fiber biosensoris introduced and studied. The suggested design has microstructure of air holes in the core region surrounded by two large semicircular metallized channels filled with the analyte. The inner surfaces of the two channels are coated by a silver layer followed by a gold layer.The simulation results are obtained using full vectorial finite element methodwith perfect matched layer (PML) boundary conditions. The proposed design depends on bimetallic configuration to enhance the biosensor sensitivity. Additionally, the suggested biosensor can be used for multi-channel/multi-analyte sensing. In this study, the sensor geometrical parameters are studied to maximize the sensitivity for the two polarized modes. The numerical results show that high refractive index sensitivity of 4750 nm/RIU (refractive index unit) and 4300 nm/RIU can be achieved for the quasi (transverse magnetic) TM and quasi (transverse electric) TE modes of the proposed biosensor, respectively. The reportedbiosensor has advantages of integration of microfluidics setup, waveguide and metallic layers into a single structure. As a result, compact biosensor with better integration compared to conventional optical fiber SPR biosensors can be obtained.

Keywords: photonic crystal fibers, gold, silver, surface plasmon, biosensor

Procedia PDF Downloads 357
4409 Risk Assessment of Roof Structures in Concepcion, Tarlac in the Event of an Ash Fall

Authors: Jerome Michael J. Sadullo, Jamaica Lois A. Torres, Trisha Muriel T. Valino

Abstract:

In the Philippines, Central Luzon is one of the regions at high risk in terms of volcanic eruption. In fact, last June 15, 1991, which were the Mount Pinatubo has erupted, the most affected provinces were Zambales, Olangapo, Pampanga, Tarlac, Bataan, Bulacan and Nueva Ecija. During the Mount Pinatubo eruption, Castillejos, Zambales, has recorded the most significant damage to both commercial and residential structures. In this study, the researchers aim to determine and analyze the various impacts of ashfall on roof structures in Concepcion, Tarlac, during the event of a volcanic eruption. In able for the researcher to determine the sample size of the study, they have utilized Cochran's sample size formula. With the computed sample size, the researchers have gathered data through the distribution of survey forms, utilizing public records, and picture documentation of different roof structures in Concepcion, Tarlac. With the data collected, Chi-squared goodness of fit was done by the researcher in order to compare the data collected from the observed N (Concepcion, Tarlac) and expected N (Castillejos, Zambales). The results showed that when it comes to the roof constructions material used in Concepcion, Tarlac and Castillejos, Zambales. Structures in Concepcion, Tarlac were most likely to suffer worse when another eruption happens compared to the structures in Castillejos, Zambales. Yet, considering the current structural statuses of structure in Concepcion Tarlac and its location from Mount Pinatubo, they are less likely to experience ashfall.

Keywords: risk assessment, Concepcion, Tarlac, Volcano Pinatubo, roof structures, ashfall

Procedia PDF Downloads 76
4408 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties

Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying

Abstract:

SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.

Keywords: crystallization, MTO, Si/Al ratio, SSZ-13

Procedia PDF Downloads 267
4407 Development of a Model for the Redesign of Plant Structures

Authors: L. Richter, J. Lübkemann, P. Nyhuis

Abstract:

In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.

Keywords: change driven factory redesign, factory planning, plant structure, flexibility

Procedia PDF Downloads 250
4406 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.

Keywords: liquid crystals, polymers, small-angle scattering, optical properties

Procedia PDF Downloads 591
4405 Comparative Study on Performance of Air-Cooled Condenser (ACC) Steel Platform Structures using SCBF Frames, Spatial Structures and CFST Frames

Authors: Hassan Gomar, Shahin Bagheri, Nader Keyvan, Mozhdeh Shirinzadeh

Abstract:

Air-Cooled Condenser (ACC) platform structures are the most complicated and principal structures in power plants and other industrial parts which need to condense the low-pressure steam in the cycle. Providing large spans for this structure has great merit as there would be more space for other subordinate buildings and pertinent equipment. Moreover, applying methods to reduce the overall cost of construction while maintaining its strength against severe seismic loading is of high significance. Tabular spatial structures and composite frames have been widely used in recent years to satisfy the need for higher strength at a reasonable price. In this research program, three different structural systems have been regarded for ACC steel platform using Special Concentrate Braced Frames (SCBF), which is the most common system (first scheme), modular spatial frames (second scheme) and finally, a modified method applying Concrete Filled Steel Tabular (CFST) columns (third scheme). The finite element method using Sap2000 and Etabs software was conducted to investigate the behavior of the structures and make a precise comparison between the models. According to the results, the total weight of the steel structure in the second scheme decreases by 13% compared to the first scheme and applying CFST columns in the third scheme causes a 3% reduction in the total weight of the structure in comparison with the second scheme while all the lateral displacements and P-M interaction ratios are in the admissible limit.

Keywords: ACC, SCBF frames, spatial structures, CFST frames

Procedia PDF Downloads 174
4404 The Distributed Pattern of the Neurovascular Structures under Clavicle to Minimize Structural Injury in Clinical Field: Anatomical Study

Authors: Anna Jeon, Seung-Ho Han, Je-Hun Lee

Abstract:

The aim of this study was to determine the location and distribution pattern of neurovascular structures superior and inferior to the clavicle by detailed dissection. Fifteen adult non-embalmed cadavers with a mean age of 71.5 years were studied. For measurements, the most prominent point of the sternal end of the clavicle (SEC) on anterior view and the most prominent point of the acromial end of the clavicle (AEC) were identified before dissection. A line connecting the SEC and AEC was used as a reference line. The surrounding neurovascular structures were investigated. The supraclavicular nerve was densely distributed at 71.73% on the reference line. Branches of the thoracoacromial artery were located at 76.92%. Branches of subclavian vein were evenly distributed at all sections. The subclavian vein and artery and brachial plexus were located from 31.3% to 57.5%. That area needs caution because major neurovascular structures run underneath the clavicle.

Keywords: clavicle, ORIF, neurovascular structure, anatomical study

Procedia PDF Downloads 137
4403 Physical Aspects of Shape Memory and Reversibility in Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape memory alloys take place in a class of smart materials by exhibiting a peculiar property called the shape memory effect. This property is characterized by the recoverability of two certain shapes of material at different temperatures. These materials are often called smart materials due to their functionality and their capacity of responding to changes in the environment. Shape memory materials are used as shape memory devices in many interdisciplinary fields such as medicine, bioengineering, metallurgy, building industry and many engineering fields. The shape memory effect is performed thermally by heating and cooling after first cooling and stressing treatments, and this behavior is called thermoelasticity. This effect is based on martensitic transformations characterized by changes in the crystal structure of the material. The shape memory effect is the result of successive thermally and stress-induced martensitic transformations. Shape memory alloys exhibit thermoelasticity and superelasticity by means of deformation in the low-temperature product phase and high-temperature parent phase region, respectively. Superelasticity is performed by stressing and releasing the material in the parent phase region. Loading and unloading paths are different in the stress-strain diagram, and the cycling loop reveals energy dissipation. The strain energy is stored after releasing, and these alloys are mainly used as deformation absorbent materials in control of civil structures subjected to seismic events, due to the absorbance of strain energy during any disaster or earthquake. Thermal-induced martensitic transformation occurs thermally on cooling, along with lattice twinning with cooperative movements of atoms by means of lattice invariant shears, and ordered parent phase structures turn into twinned martensite structures, and twinned structures turn into the detwinned structures by means of stress-induced martensitic transformation by stressing the material in the martensitic condition. Thermal induced transformation occurs with the cooperative movements of atoms in two opposite directions, <110 > -type directions on the {110} - type planes of austenite matrix which is the basal plane of martensite. Copper-based alloys exhibit this property in the metastable β-phase region, which has bcc-based structures at high-temperature parent phase field. Lattice invariant shear and twinning is not uniform in copper-based ternary alloys and gives rise to the formation of complex layered structures, depending on the stacking sequences on the close-packed planes of the ordered parent phase lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper-based CuAlMn and CuZnAl alloys. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit superlattice reflections inherited from the parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that diffraction angles and intensities of diffraction peaks change with the aging duration at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close to each other. This result refers to the rearrangement of atoms in a diffusive manner.

Keywords: shape memory effect, martensitic transformation, reversibility, superelasticity, twinning, detwinning

Procedia PDF Downloads 161
4402 Cadaveric Study of Lung Anatomy: A Surgical Overview

Authors: Arthi Ganapathy, Rati Tandon, Saroj Kaler

Abstract:

Introduction: A thorough knowledge of variations in lung anatomy is of prime significance during surgical procedures like lobectomy, pneumonectomy, and segmentectomy of lungs. The arrangement of structures in the lung hilum act as a guide in performing such procedures. The normal pattern of arrangement of hilar structures in the right lung is eparterial bronchus, pulmonary artery, hyparterial bronchus and pulmonary veins from above downwards. In the left lung, it is pulmonary artery, principal bronchus and pulmonary vein from above downwards. The arrangement of hilar structures from anterior to posterior in both the lungs is pulmonary vein, pulmonary artery, and principal bronchus. The bronchial arteries are very small and usually the posterior most structures in the hilum of lungs. Aim: The present study aims at reporting the variations in hilar anatomy (arrangement and number) of lungs. Methodology: 75 adult formalin fixed cadaveric lungs from the department of Anatomy AIIMS New Delhi were observed for variations in the lobar anatomy. Arrangement of pulmonary hilar structures was meticulously observed, and any deviation in the pattern of presentation was recorded. Results: Among the 75 adult lung specimens observed 36 specimens were of right lung and the rest of left lung. Seven right lung specimens showed only 2 lobes with an oblique fissure dividing them and one left lung showed 3 lobes. The normal pattern of arrangement of hilar structures was seen in 22 right lungs and 23 left lungs. Rest of the lung specimens (14 right and 16 left) showed a varied pattern of arrangement of hilar structures. Some of them showed alterations in the sequence of arrangement of pulmonary artery, pulmonary veins, bronchus, and others in the number of these structures. Conclusion: Alterations in the pattern of arrangement of structures in the lung hilum are quite frequent. A compromise in knowledge of such variations will result in inadvertent complications like intraoperative bleeding during surgical procedures.

Keywords: fissures, hilum, lobes, pulmonary

Procedia PDF Downloads 200
4401 Effect of Co-doping on Polycrystalline Ni-Mn-Ga

Authors: Mahsa Namvari, Kari Ullakko

Abstract:

It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals.

Keywords: Ni-Mn-Ga, ferromagnetic shape memory, martensitic phase transformation, grain growth

Procedia PDF Downloads 62
4400 Theoretical Analysis of Mechanical Vibration for Offshore Platform Structures

Authors: Saeed Asiri, Yousuf Z. AL-Zahrani

Abstract:

A new class of support structures, called periodic structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that creates stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities; and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.

Keywords: vibrations, periodic structures, offshore, platforms, transfer matrix method

Procedia PDF Downloads 266
4399 Comparison of Compression Properties of Stretchable Knitted Fabrics and Bi-Stretch Woven Fabrics for Compression Garments

Authors: Muhammad Maqsood, Yasir Nawab, Syed Talha Ali Hamdani

Abstract:

Stretchable fabrics have diverse applications ranging from casual apparel to performance sportswear and compression therapy. Compression therapy is the universally accepted treatment for the management of hypertrophic scarring after severe burns. Mostly stretchable knitted fabrics are used in compression therapy but in the recent past, some studies have also been found on bi-stretch woven fabrics being used as compression garments as they also have been found quite effective in the treatment of oedema. Therefore, the objective of the present study is to compare the compression properties of stretchable knitted and bi-stretch woven fabrics for compression garments. For this purpose four woven structures and four knitted structures were produced having the same areal density and their compression, comfort and mechanical properties were compared before and after 5, 10 and 15 washes. Four knitted structures used were single jersey, single locaste, plain pique and the honeycomb, whereas four woven structures produced were 1/1 plain, 2/1 twill, 3/1 twill and 4/1 twill. The compression properties of the produced samples were tested by using kikuhime pressure sensor and it was found that bi-stretch woven fabrics possessed better compression properties before and after washes and retain their durability after repeated use, whereas knitted stretchable fabrics lost their compression ability after repeated use and the required sub garment pressure of the knitted structures after 15 washes was almost half to that of woven bi-stretch fabrics.

Keywords: compression garments, knitted structures, medical textiles, woven bi-stretch

Procedia PDF Downloads 379
4398 Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology

Authors: Rilwan Kayode Apalowo, Dimitrios Chronopoulos

Abstract:

An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements.

Keywords: structural identification, non-destructive evaluation, finite elements, wave propagation, layered structures, ultrasound

Procedia PDF Downloads 109
4397 An Extended X-Ray Absorption Fine Structure Study of CoTi Thin Films

Authors: Jose Alberto Duarte Moller, Cynthia Deisy Gomez Esparza

Abstract:

The cobalt-titanium system was grown as thin films in an INTERCOVAMEX V3 sputtering system, equipped with four magnetrons assisted by DC pulsed and direct DC. A polished highly oriented (400) silicon wafer was used as substrate and the growing temperature was 500 oC. Xray Absorption Spectroscopy experiments were carried out in the SSRL in the 4-3 beam line. The Extenden X-Ray Absorption Fine Structure spectra have been numerically processed by WINXAS software from the background subtraction until the normalization and FFT adjustment. Analyzing the absorption spectra of cobalt in the CoTi2 phase we can appreciate that they agree in energy with the reference spectra that corresponds to the CoO, which indicates that the valence where upon working is Co2+. The RDF experimental results were then compared with those RDF´s generated theoretically by using FEFF software, from a model compound of CoTi2 phase obtained by XRD. The fitting procedure is a highly iterative process. Fits are also checked in R-space using both the real and imaginary parts of Fourier transform. Finally, the presence of overlapping coordination shells and the correctness of the assumption about the nature of the coordinating atom were checked.

Keywords: XAS, EXAFS, FEFF, CoTi

Procedia PDF Downloads 268
4396 Multiple Negative-Differential Resistance Regions Based on AlN/GaN Resonant Tunneling Structures by the Vertical Growth of Molecular Beam Epitaxy

Authors: Yao Jiajia, Wu Guanlin, LIU Fang, Xue Junshuai, Zhang Jincheng, Hao Yue

Abstract:

Resonant tunneling diodes (RTDs) based on GaN have been extensively studied. However, no results of multiple logic states achieved by RTDs were reported by the methods of epitaxy in the GaN materials. In this paper, the multiple negative-differential resistance regions by combining two discrete double-barrier RTDs in series have been first demonstrated. Plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow structures consisting of two vertical RTDs. The substrate was a GaN-on-sapphire template. Each resonant tunneling structure was composed of a double barrier of AlN and a single well of GaN with undoped 4-nm space layers of GaN on each side. The AlN barriers were 1.5 nm thick, and the GaN well was 2 nm thick. The resonant tunneling structures were separated from each other by 30-nm thick n+ GaN layers. The bottom and top layers of the structures, grown neighboring to the spacer layers that consist of 200-nm-thick n+ GaN. These devices with two tunneling structures exhibited uniform peaks and valleys current and also had two negative differential resistance NDR regions equally spaced in bias voltage. The current-voltage (I-V) characteristics of resonant tunneling structures with diameters of 1 and 2 μm were analyzed in this study. These structures exhibit three stable operating points, which are investigated in detail. This research demonstrates that using molecular beam epitaxy MBE to vertically grow multiple resonant tunneling structures is a promising method for achieving multiple negative differential resistance regions and stable logic states. These findings have significant implications for the development of digital circuits capable of multi-value logic, which can be achieved with a small number of devices.

Keywords: GaN, AlN, RTDs, MBE, logic state

Procedia PDF Downloads 64
4395 Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon

Authors: Woei-Shyan Lee, Shuo-Ling Chang

Abstract:

The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased.

Keywords: nanoindentation, silicon, phase transformation, amorphous, annealing

Procedia PDF Downloads 333