Search results for: vapor compression refrigeration cycles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2064

Search results for: vapor compression refrigeration cycles

1944 Influence of the Compression Force and Powder Particle Size on Some Physical Properties of Date (Phoenix dactylifera) Tablets

Authors: Djemaa Megdoud, Messaoud Boudaa, Fatima Ouamrane, Salem Benamara

Abstract:

In recent years, the compression of date (Phoenix dactylifera L.) fruit powders (DP) to obtain date tablets (DT) has been suggested as a promising form of valorization of non commercial valuable date fruit (DF) varieties. To further improve and characterize DT, the present study aims to investigate the influence of the DP particle size and compression force on some physical properties of DT. The results show that independently of particle size, the hardness (y) of tablets increases with the increase of the compression force (x) following a logarithmic law (y = a ln (bx) where a and b are the constants of model). Further, a full factorial design (FFD) at two levels, applied to investigate the erosion %, reveals that the effects of time and particle size are the same in absolute value and they are beyond the effect of the compression. Regarding the disintegration time, the obtained results also by means of a FFD show that the effect of the compression force exceeds 4 times that of the DP particle size. As final stage, the color parameters in the CIELab system of DT immediately after their obtaining are differently influenced by the size of the initial powder.

Keywords: powder, tablets, date (Phoenix dactylifera L.), hardness, erosion, disintegration time, color

Procedia PDF Downloads 397
1943 Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi

Authors: A. D. Parekh

Abstract:

The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal.

Keywords: cascade refrigeration system, Taguchi method, heat transfer area, ANOVA, optimal solution

Procedia PDF Downloads 304
1942 Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi Methodology

Authors: A. D. Parekh

Abstract:

The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal.

Keywords: cascade refrigeration system, Taguchi method, heat transfer area, ANOVA, optimal solution

Procedia PDF Downloads 355
1941 Up-Flow Sponge Submerged Biofilm Reactor for Municipal Sewage Treatment

Authors: Saber A. El-Shafai, Waleed M. Zahid

Abstract:

An up-flow submerged biofilm reactor packed with sponge was investigated for sewage treatment. The reactor was operated two cycles as single aerobic (1-1 at 3.5 L/L.d HLR and 1-2 at 3.8 L/L.day HLR) and four cycles as single anaerobic/aerobic reactor; 2-1 and 2-2 at low HLR (3.7 and 3.5 L/L.day) and 2-3 and 2-4 at high HLR (5.1 and 5.4 L/L.day). During the aerobic cycles, 50% effluent recycling significantly reduces the system performance except for phosphorous. In case of the anaerobic/aerobic reactor, the effluent recycling, significantly improves system performance at low HLR while at high HLR only phosphorous removal was improved. Excess sludge production was limited to 0.133 g TSS/g COD with better sludge volume index (SVI) in case of anaerobic/aerobic cycles; (54.7 versus 58.5 ml/g).

Keywords: aerobic, anaerobic/aerobic, up-flow, submerged biofilm, sponge

Procedia PDF Downloads 266
1940 Application of Compressed Sensing Method for Compression of Quantum Data

Authors: M. Kowalski, M. Życzkowski, M. Karol

Abstract:

Current quantum key distribution systems (QKD) offer low bit rate of up to single MHz. Compared to conventional optical fiber links with multiple GHz bitrates, parameters of recent QKD systems are significantly lower. In the article we present the conception of application of the Compressed Sensing method for compression of quantum information. The compression methodology as well as the signal reconstruction method and initial results of improving the throughput of quantum information link are presented.

Keywords: quantum key distribution systems, fiber optic system, compressed sensing

Procedia PDF Downloads 658
1939 Feasibility Study of the Binary Fluid Mixtures C3H6/C4H10 and C3H6/C5H12 Used in Diffusion-Absorption Refrigeration Cycles

Authors: N. Soli, B. Chaouachi, M. Bourouis

Abstract:

We propose in this work the thermodynamic feasibility study of the operation of a refrigerating machine with absorption-diffusion with mixtures of hydrocarbons. It is for a refrigerating machine of low power (300 W) functioning on a level of temperature of the generator lower than 150 °C (fossil energy or solar energy) and operative with non-harmful fluids for the environment. According to this study, we determined to start from the digraphs of Oldham of the different binary of hydrocarbons, the minimal and maximum temperature of operation of the generator, as well as possible enrichment. The cooling medium in the condenser and absorber is done by the ambient air with a temperature at 35 °C. Helium is used as inert gas. The total pressure in the cycle is about 17.5 bars. We used suitable software to modulate for the two binary following the system propylene /butane and propylene/pentane. Our model is validated by comparison with the literature’s resultants.

Keywords: absorption, DAR cycle, diffusion, propyléne

Procedia PDF Downloads 254
1938 Experimental Investigation of the Effect of Compression Ratio in a Direct Injection Diesel Engine Running on Different Blends of Rice Bran Oil and Ethanol

Authors: Perminderjit Singh, Randeep Singh

Abstract:

The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio multifuel engine when fueled with different blends of rice bran oil methyl ester and ethanol are investigated and compared with the results of standard diesel. Biodiesel produced from rice bran oil by transesterification process has been used in this study. The experiment has been conducted at a fixed engine speed of 1500 rpm, 50% load and at compression ratios of 16.5:1, 17:1, 17.5:1 and 18:1. The impact of compression ratio on fuel consumption, brake thermal efficiency and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives the best performance has been identified. The results indicate longer ignition delay, the maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for waste cooking oil methyl ester when compared to that of diesel. The brake thermal efficiency at 50% load for rice bran oil methyl ester blends and diesel has been calculated and the blend B40 is found to give maximum thermal efficiency. The blends when used as fuel results in the reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions.

Keywords: biodiesel, rice bran oil, transesterification, ethanol, compression ratio

Procedia PDF Downloads 402
1937 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression

Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas

Abstract:

Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.

Keywords: acoustic emission, geomaterial, laser ultrasound, uniaxial compression

Procedia PDF Downloads 341
1936 A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory

Authors: Siavash Eftekharifar, Tohid Yousefi Rezaii, Mahdi Shamsi

Abstract:

The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method.

Keywords: compressed sensing, ECG compression, Gaussian kernel, sparse representation

Procedia PDF Downloads 433
1935 Analysis of Heat Transfer and Energy Saving Characteristics for Bobsleigh/Skeleton Ice Track

Authors: Zichu Liu, Zhenhua Quan, Xin Liu, Yaohua Zhao

Abstract:

Enhancing the heat transfer characteristics of the bobsleigh/skeleton ice track and reducing the energy consumption of the bobsleigh/skeleton ice track plays an important role in energy saving of the refrigeration systems. In this study, a track ice-making test rig was constructed to verify the accuracy of the established ice track heat transfer model. The different meteorological conditions on the variations in the heat transfer characteristics of the ice surface, ice temperature, and evaporation temperature with or without Terrain Weather Protection System (TWPS) were investigated, and the influence of the TWPS with and without low emissivity materials on these indexes was also compared. In addition, the influence of different pipe spacing and diameters of refrigeration pipe on the heat transfer resistance of the track is also analyzed. The results showed that compared with the ice track without sunshade facilities, TWPS could reduce the heat transfer between ice surface and air by 17.6% in the transition season, and TWPS with low emissivity material could reduce the heat transfer by 37%. The thermal resistance of the ice track decreased by 8.9×10⁻⁴ m²·°C/W, and the refrigerant evaporation temperature increased by 0.25 °C when the cooling pipes spacing decreased by every 10 mm. The thermal resistance decreased by 1.46×10⁻³ m²·°C/W, and the refrigerant evaporation temperature increased by 0.3 °C when the pipe diameter increased by one nominal diameter.

Keywords: bobsleigh/skeleton ice track, calculation model, heat transfer characteristics, refrigeration

Procedia PDF Downloads 70
1934 Sainte Sophie Landfill: Field-Scale Assessment of Municipal Solid Waste Mechanical Characteristics

Authors: Wameed Alghazali, Shawn Kenny, Paul J. Van Geel

Abstract:

Settlement of municipal solid waste (MSW) in landfills can be represented by mechanical settlement, which is instantaneous and time-dependent creep components, and biodegradation-induced settlement. Mechanical settlement is governed by the physical characteristics of MSW and the applied overburden pressure. Several research studies used oedometers and different size compression cells to evaluate the primary and mechanical creep compression indices/ratios. However, MSW is known for its heterogeneity, which means data obtained from laboratory testing are not necessary to be a good representation of the mechanical response observed in the field. Furthermore, most of the laboratory tests found in the literature were conducted on shredded samples of MSW to obtain specimens that are suitable for the testing setup. It is believed that shredding MSW samples changes the physical and mechanical properties of the waste. In this study, settlement field data was collected during the filling stage of Ste. Sophie landfill was used to estimate the primary and mechanical creep compression ratios. The field results from Ste. Sophie landfill indicated that both the primary and mechanical creep compression ratios of MSW are not constants but decrease with the increase in the applied vertical stress.

Keywords: mechanical creep compression ratio, municipal solid waste, primary compression ratio, stress level

Procedia PDF Downloads 64
1933 Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding

Authors: A. Seddiki, M. Djebbouri, D. Guerchi

Abstract:

Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.

Keywords: global thresholding transform, huffman coding, region of interest, SPIHT coding, scintigraphic images

Procedia PDF Downloads 338
1932 Influence of Nanozeolite Particles on Improvement of Clayey Soil

Authors: A. Goodarzian, A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil.

Keywords: nanoparticles, soil improvement, clayey soil, unconfined compression stress

Procedia PDF Downloads 97
1931 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials

Authors: Chongyang Ye, Rong Liu

Abstract:

Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.

Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis

Procedia PDF Downloads 92
1930 TiO₂ Nanotube Array Based Selective Vapor Sensors for Breath Analysis

Authors: Arnab Hazra

Abstract:

Breath analysis is a quick, noninvasive and inexpensive technique for disease diagnosis can be used on people of all ages without any risk. Only a limited number of volatile organic compounds (VOCs) can be associated with the occurrence of specific diseases. These VOCs can be considered as disease markers or breath markers. Selective detection with specific concentration of breath marker in exhaled human breath is required to detect a particular disease. For example, acetone (C₃H₆O), ethanol (C₂H₅OH), ethane (C₂H₆) etc. are the breath markers and abnormal concentrations of these VOCs in exhaled human breath indicates the diseases like diabetes mellitus, renal failure, breast cancer respectively. Nanomaterial-based vapor sensors are inexpensive, small and potential candidate for the detection of breath markers. In practical measurement, selectivity is the most crucial issue where trace detection of breath marker is needed to identify accurately in the presence of several interfering vapors and gases. Current article concerns a novel technique for selective and lower ppb level detection of breath markers at very low temperature based on TiO₂ nanotube array based vapor sensor devices. Highly ordered and oriented TiO₂ nanotube array was synthesized by electrochemical anodization of high purity tatinium (Ti) foil. 0.5 wt% NH₄F, ethylene glycol and 10 vol% H₂O was used as the electrolyte and anodization was carried out for 90 min with 40 V DC potential. Au/TiO₂ Nanotube/Ti, sandwich type sensor device was fabricated for the selective detection of VOCs in low concentration range. Initially, sensor was characterized where resistive and capacitive change of the sensor was recorded within the valid concentration range for individual breath markers (or organic vapors). Sensor resistance was decreased and sensor capacitance was increased with the increase of vapor concentration. Now, the ratio of resistive slope (mR) and capacitive slope (mC) provided a concentration independent constant term (M) for a particular vapor. For the detection of unknown vapor, ratio of resistive change and capacitive change at any concentration was same to the previously calculated constant term (M). After successful identification of the target vapor, concentration was calculated from the straight line behavior of resistance as a function of concentration. Current technique is suitable for the detection of particular vapor from a mixture of other interfering vapors.

Keywords: breath marker, vapor sensors, selective detection, TiO₂ nanotube array

Procedia PDF Downloads 133
1929 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile

Authors: Reira Kinoshita, Shin'ichi Ishimaru

Abstract:

Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.

Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds

Procedia PDF Downloads 83
1928 Simulation for the Magnetized Plasma Compression Study

Authors: Victor V. Kuzenov, Sergei V. Ryzhkov

Abstract:

Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed.

Keywords: magnetized target, magneto-inertial fusion, mathematical model, plasma and laser beams

Procedia PDF Downloads 268
1927 Mobile Learning: Toward Better Understanding of Compression Techniques

Authors: Farouk Lawan Gambo

Abstract:

Data compression shrinks files into fewer bits then their original presentation. It has more advantage on internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature therefore making them difficult to digest by some students (Engineers in particular). To determine the best approach toward learning data compression technique, this paper first study the learning preference of engineering students who tend to have strong active, sensing, visual and sequential learning preferences, the paper also study the advantage that mobility of learning have experienced; Learning at the point of interest, efficiency, connection, and many more. A survey is carried out with some reasonable number of students, through random sampling to see whether considering the learning preference and advantages in mobility of learning will give a promising improvement over the traditional way of learning. Evidence from data analysis using Ms-Excel as a point of concern for error-free findings shows that there is significance different in the students after using learning content provided on smart phone, also the result of the findings presented in, bar charts and pie charts interpret that mobile learning has to be promising feature of learning.

Keywords: data analysis, compression techniques, learning content, traditional learning approach

Procedia PDF Downloads 323
1926 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics

Authors: Shi Yu, Rong Liu, Jingyun Lv

Abstract:

Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density (yarn diameters) of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.

Keywords: laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles

Procedia PDF Downloads 159
1925 Dynamic Compensation for Environmental Temperature Variation in the Coolant Refrigeration Cycle as a Means of Increasing Machine-Tool Precision

Authors: Robbie C. Murchison, Ibrahim Küçükdemiral, Andrew Cowell

Abstract:

Thermal effects are the largest source of dimensional error in precision machining, and a major proportion is caused by ambient temperature variation. The use of coolant is a primary means of mitigating these effects, but there has been limited work on coolant temperature control. This research critically explored whether CNC-machine coolant refrigeration systems adapted to actively compensate for ambient temperature variation could increase machining accuracy. Accuracy data were collected from operators’ checklists for a CNC 5-axis mill and statistically reduced to bias and precision metrics for observations of one day over a sample period of 27 days. Temperature data were collected using three USB dataloggers in ambient air, the chiller inflow, and the chiller outflow. The accuracy and temperature data were analysed using Pearson correlation, then the thermodynamics of the system were described using system identification with MATLAB. It was found that 75% of thermal error is reflected in the hot coolant temperature but that this is negligibly dependent on ambient temperature. The effect of the coolant refrigeration process on hot coolant outflow temperature was also found to be negligible. Therefore, the evidence indicated that it would not be beneficial to adapt coolant chillers to compensate for ambient temperature variation. However, it is concluded that hot coolant outflow temperature is a robust and accessible source of thermal error data which could be used for prevention strategy evaluation or as the basis of other thermal error strategies.

Keywords: CNC manufacturing, machine-tool, precision machining, thermal error

Procedia PDF Downloads 57
1924 A Method for Compression of Short Unicode Strings

Authors: Masoud Abedi, Abbas Malekpour, Peter Luksch, Mohammad Reza Mojtabaei

Abstract:

The use of short texts in communication has been greatly increasing in recent years. Applying different languages in short texts has led to compulsory use of Unicode strings. These strings need twice the space of common strings, hence, applying algorithms of compression for the purpose of accelerating transmission and reducing cost is worthwhile. Nevertheless, other compression methods like gzip, bzip2 or PAQ due to high overhead data size are not appropriate. The Huffman algorithm is one of the rare algorithms effective in reducing the size of short Unicode strings. In this paper, an algorithm is proposed for compression of very short Unicode strings. At first, every new character to be sent to a destination is inserted in the proposed mapping table. At the beginning, every character is new. In case the character is repeated for the same destination, it is not considered as a new character. Next, the new characters together with the mapping value of repeated characters are arranged through a specific technique and specially formatted to be transmitted. The results obtained from an assessment made on a set of short Persian and Arabic strings indicate that this proposed algorithm outperforms the Huffman algorithm in size reduction.

Keywords: Algorithms, Data Compression, Decoding, Encoding, Huffman Codes, Text Communication

Procedia PDF Downloads 320
1923 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 133
1922 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 398
1921 Electrical Properties of CVD-Graphene on SiC

Authors: Bilal Jabakhanji, Dimitris Kazazis, Adrien Michon, Christophe Consejo, Wilfried Desrat, Benoit Jouault

Abstract:

In this paper, we investigate the electrical properties of graphene grown by Chemical Vapor Deposition (CVD) on the Si face of SiC substrates. Depending on the growth condition, hole or electron doping can be achieved, down to a few 1011cm−2. The high homogeneity of the graphene and the low intrinsic carrier concentration, allow the remarkable observation of the Half Integer Quantum Hall Effect, typical of graphene, at the centimeter scale.

Keywords: graphene, quantum hall effect, chemical vapor, deposition, silicon carbide

Procedia PDF Downloads 634
1920 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement

Authors: M. Mlhem

Abstract:

Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.

Keywords: additives, clay, compression strength, epoxy, stabilization

Procedia PDF Downloads 100
1919 Effects of Hawthorn (Crataegus monogyna) Polyphenols on Oxymyoglobin and Myofibrillar Proteins Stability in Meat

Authors: Valentin Nicorescu, Nicoleta C. Predescu, Camelia Papuc, Iuliana Gajaila, Carmen D. Petcu

Abstract:

The oxidation of the fresh muscle oxymyoglobin (bright red colour) to metmyoglobin (brown colour) leads to discoloration of red meats. After slaughter, enzymatic systems involved in metmyoglobin reduction are continually depleted as time post-mortem progresses, thus the meat colour is affected. Phenolic compounds are able to scavenge reactive species involved in oxymyoglobin oxidation and to reduce metmyoglobin to oxymyoglobin. The aim of this study was to investigate the effect of polyphenols extracted from hawthorn fruits on the stability of oxymyoglobin and myofibrillar proteins in ground pork subject to refrigeration for 6 days. Hawthorn polyphenols (HP) were added in ground pork in 100, 200 and 300 ppm concentrations. Oxymyoglobin and metmyoglobin were evaluated spectrophotometrically at every 2 days and electrophoretic pattern of myofibrillar proteins was investigated at days 0 and 6 by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). For all meat samples, oxymyoglobin concentration significantly decreased during the first 4 days of refrigeration. After 6 days, the significant decrease of oxymyoglobin concentration continued only in the negative control samples. In samples treated with HP and butylated hydroxylanisole (BHA - positive control), oxymyoglobin concentration increased after 6 days of refrigeration, the highest levels complying with the following order: 100 ppm HP > 200 ppm HP > 300 ppm HP > 100 ppm BHA. The increase in metmyoglobin was coincidental with the decrease in oxymyoglobin; metmyoglobin concentration progressively increased during the first 4 days of refrigeration in all meat samples. After 6 days, in meat samples treated with HP and BHA, lower metmyoglobin concentrations were found (compared to day 4), respecting the following order: 100 ppm HP < 200 ppm HP < 300 ppm HP < 100 ppm BHA. These results showed that hawthorn polyphenols and BHA reduced metmyoglobin (MbFe3+) to oxymyoglobin (MbFe2+), and the strongest reducing character was recorded for 100 ppm HP. After 6 days of refrigeration, electrophoretic pattern of myofibrillar proteins showed minor changes compared to day 0, indicating that HP prevent protein degradation as well as synthetic antioxidant BHA. Also, HP did not induce cross-links in the myofibrillar proteins, to form protein aggregates, and no risk of reducing their ability to retain water was identified. The pattern of oxymyoglobin and metmyoglobin concentrations determined in this study showed that hawthorn polyphenols are able to reduce metmyoglobin to oxymyoglobin and to delay oxymyoglobin oxidation, especially when they are added to ground meat in concentration of 100 ppm. This work was carried out through Partnerships in priority areas Program – PN II, implemented with the support of MEN – UEFISCDI (Romania), project nr. 149/2014.

Keywords: Hawthorn polyphenols, metmyoglobin, oxymyoglobin, proteins stability

Procedia PDF Downloads 193
1918 Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression

Authors: Zhengyi Kong, Xueqing Wang, Quang-Viet Vu

Abstract:

In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression.

Keywords: hot-finished, elliptical hollow section, uniaxial eccentric compression, finite element method

Procedia PDF Downloads 116
1917 Medical Image Compression by Region of Interest Based on DT-CWT Using Run-length Coding and Huffman Coding

Authors: Ali Seddiki, Mohamed Djebbouri, Driss Guerchi

Abstract:

Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. In some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to quality purpose compression in the region of interest of scintigraphic images based on dual tree complex wavelet transform (DT-CWT) using Run-Length coding (RLE) and Huffman coding (HC).

Keywords: DT-CWT, region of interest, run length coding, Scintigraphic images

Procedia PDF Downloads 256
1916 A Simulation Model and Parametric Study of Triple-Effect Desalination Plant

Authors: Maha BenHamad, Ali Snoussi, Ammar Ben Brahim

Abstract:

A steady-state analysis of triple-effect thermal vapor compressor desalination unit was performed. A mathematical model based on mass, salinity and energy balances is developed. The purpose of this paper is to develop a connection between process simulator and process optimizer in order to study the influence of several operating variables on the performance and the produced water cost of the unit. A MATLAB program is used to solve the model equations, and Aspen HYSYS is used to model the plant. The model validity is examined against a commercial plant and showed a good agreement between industrial data and simulations results. Results show that the pressures of the last effect and the compressed vapor have an important influence on the produced cost, and the increase of the difference temperature in the condenser decreases the specific heat area about 22%.

Keywords: steady-state, triple effect, thermal vapor compressor, Matlab, Aspen Hysys

Procedia PDF Downloads 152
1915 Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay

Authors: A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.

Keywords: nanobentonite particles, clayey soil, unconfined compression stress, soil improvement.

Procedia PDF Downloads 98